

January 27, 2014

Ms. Alison Oakley Nevada Division of Environmental Protection - Bureau of Corrective Action 901 South Stewart Street Carson City, NV 89701

Re: NV Energy

Reid Gardner Station Facility ID# H-000530 Second Semi-Annual 2013 Groundwater Monitoring and Remediation Report

Dear Ms. Oakley:

The Annual Sampling Record, Tables 1A, 3, 4, and 5, copies of the laboratory analytical reports, chain-of-custody documentation, maps of the entire site that illustrate the groundwater elevations and iso-concentrations of chemicals of concern, and graphs are included on the attached CD titled Second Semi-Annual 2013 Groundwater Monitoring and Remediation Report. The file formats are either PDF, WORD, or EXCEL.

Following is a brief summary of the activities conducted during the third quarter 2013 at the above-referenced facility (for an update on Administrative Order On Consent (AOC) Activities, please refer to the section **Administrative Order On Consent (AOC) Activities** of this report):

WORK PERFORMED THIS QUARTER – THIRD QUARTER 2013

Conducted the Second Semi-Annual 2013 sampling event

WORK PROPOSED FOR NEXT QUARTER – FOURTH QUARTER 2013

- AOC quarterly groundwater gauging
- Continue efforts to improve and maintenance of the groundwater extraction and treatment systems

Current Phase of Project:	Monitoring/Remediation	(Assessment, etc.)
Frequency of Monitoring:	Quarterly	(Quarterly, etc.)
Frequency of Sampling:	Semi-Annually	(Quarterly, etc.)
Separate-Phase Hydrocarbons Present:	Yes in NE part of Plant Area	(Yes/No)
Current Remediation Techniques:	Groundwater P&T	(DPE, P&T, etc.)
Approximate Depth to Groundwater:	4.3 to 163.17	(foot/TOC)
Average GW Change from Last Quarter:	1.01	_(GW Elevation feet)
General Groundwater Flow Direction:	Easterly	(Direction)

Response to Comments

The NDEP provided comments on the First Semi-Annual 2013 Groundwater Monitoring Report on September 27, 2013. The comments are shown below along with responses from NVE.

Comment #1

"General Comment, The subject document indicates several concerns regarding wells and/or conditions of wells. NDEP recommends dedicating a portion of a future work shop to specifically discuss these wells and the associated concerns."

Response #1

In response to NDEP's Comment #1, NDEP's comments on the First Semi-Annual GMR were discussed at the October 16, 2013 Quarterly AOC Meeting/Workshop. NVE presented a table showing the conditions of wells currently being monitored and agreed to provide this table to NDEP. This table is also used to track resolutions. The well maintenance table is located in the tables section of the report.

Comment #2

"Page 4, Summary of Analytical Results, It would be helpful to include a copy of the table called Annual Sampling Record in the body of the Report rather than on the CD. Knowing what wells are in which area (ex., Pond Wells, Mesa Wells, etc.) helps with understanding the discussion in the Report."

Response #2

The Annual Sampling Record table has been added to the Attachments in the main body of the GMR in addition to the CD.

Comment #3:

"Page 4, Summary of Analytical Results, It was noted that many of the wells are pumped dry during purging. NVE might consider using low-flow/micro purging and sampling methods, or a sampling technique such as HydraSleeve sampling. This could enable sample collection without well dewatering."

Response #3

The use of low flow and no flow purging was discussed at the October 16, 2103 Quarterly AOC meeting. Because roots are common in the wells at NVE, Hydrasleeves may not be robust enough for the conditions. It was agreed that NVE would try low flow purging and sampling in a few wells that typically purge dry. This data would then be compared with data collected when the well is purged dry. The low flow purging and sampling will occur during the fourth quarter of 2013. NVE plans on sharing this data during a future AOC meeting.

Comment #4:

"Page 5, Hogan Wash Area, Wells specific to the Hogan Wash area are not listed as such on the Annual Sampling Record table. If Hogan is being individually discussed, the wells should be separately listed. The same reasoning applies to the Unit 4B/C Pond wells and the Unit 4A Pond wells."

Response #4

As requested, the Annual Sampling Record has been updated to reflect the groupings discussed in the report.

Comment #5:

"Page 8, Dissolved Chlorinated Solvents, There is not actual discussion about chlorinated solvents in this section. Please discuss how the petroleum free product that is bailed from HM-50R and HM-48R is disposed. Free product potentially containing chlorinated solvent constituents should be properly disposed of as hazardous waste."

Response #5

NVE will hand bail the free product from HM-50R and HM-48 and place the recovered free product in a drum located on the Reid Gardner used oil waste pad. A sample will be collected and analyzed for chlorinated solvents following the first hand bailing event providing a sufficient volume of free product is recovered to be analyzed. If chlorinated solvents are detected above State Action Level, the drum will be moved to the Reid Gardner hazardous waste pad and continue to collect free product to a monthly (calendar month) maximum of 20 gallons. The monthly maximum volume is established for Conditionally Exempt Small Quantity Generator considerations. If no chlorinated solvents are detected the free product will continue to be stored in the drum on the used oil waste pad. After 20 gallons of free product is collected, a second sample will be collected and analyzed for chlorinated solvents. If chlorinated solvents are detected above State Action Level, the drum will be moved to the Reid Gardner hazardous waste pad for proper disposal in accordance with applicable regulations. If no chlorinated solvents are detected, the 20 gallons of free product will be disposed of in the Reid Gardner used oil tank or the diesel remediation system oil/water separator.

Copies of the laboratory report will be included in subsequent GMRs if chlorinated solvents are detected above State Action Level.

Comment #6:

"Page 9, Diesel Recovery Discussion, diesel free product typically emulsifies when removed from the aquifer via dual phase extraction. NVE should evaluate if the product recovery numbers represent true free product or recovered product in emulsion with water."

Response #6

NVE agrees the product could be somewhat emulsified. The diesel free product volumes included in this report were obtained after the product had been allowed to separate in the product recovery tank.

Comment #7:

"Editorial comments, a. Page 7, third paragraph add – "found in the laboratory **results** when..." b. Page 8, 4th paragraph change – "having a **lite** tan hue" to having a **light** tan hue."

Response #7

NVE has noted the editorial comments. Because the observations have changed this quarter the suggested wording was found to be not applicable and was not used.

Monitoring Well Network Updates

On January 9, 2012, the NDEP Bureau of Corrective Actions (BCA) approved NVE's request for an interim reduction in groundwater sampling frequency and elimination of total petroleum hydrocarbon (TPH) monitoring. The wells regulated by the NDEP BCA are now sampled semi-annually during the first and third quarters. Groundwater monitoring wells will continue to be

gauged for depth to water and product thickness every quarter. This change will be in effect until a Final Groundwater Sampling Plan is approved by NDEP. This report summarizes the results of the Second Semi-Annual 2013 Sampling Event.

IMW-3S and IMW-3D, wells located north of the site, are located on Bureau of Land Management (BLM) land. The BLM right-of-way access to these wells has been resolved and NVE has resumed sampling these wells.

IMW-16S, a well located south of the Muddy River and on the Hidden Valley Dairy property, was inaccessible this quarter due to a locked gate. NVE is requesting permission to access this well as well as three former wells (KMW-5S, 5M, and 5D).

Corrections

One page of Table 1 was inadvertently left out of the First Semi-Annual Report attachments. It is included at the end of this report for your reference. This page was, however, included in the excel version of Table 1 provided on the First Semi-Annual Report CD.

Summary of Analytical Results

Please refer to the 2013 Annual Sampling Record in the tables section of this report which identifies which well samples were collected this quarter and provides remarks on field conditions at the time of sampling. Laboratory analytical results for groundwater samples collected in August 2013 are summarized in Table 1. Muddy River samples are also included for reference in Table 3 although they are not required under this permit.

A statistical analysis was performed to identify data which may be outliers. The current data was compared with the mean of the data collected since the third quarter of 2008, the first sampling event where electronic data delivery was used. Current values that were more than three standard deviations from the mean were evaluated further. These concentrations were compared to the range of historic values, resulting in a list of potential outliers. Contour maps and trend graphs from recent quarters were also compared to identify potential outliers. The laboratory and field personnel were then consulted regarding these outliers. Field personnel reviewed their field book and forms for possible deviations, inconsistencies and/or unusual observations. The laboratory Quality Assurance Officer reviewed instrument bench level data, calculations, quality control data, and data transcription. This process resulted in several locations and parameters that could be considered outliers, as discussed below.

Site-Wide

Selenium had been analyzed by ICP method since 2011. The Second Semi-Annual 2012 GMR reported that selenium concentrations were higher than historic levels, and re-evaluation of the samples suggested that ICP-MS may be a better laboratory method for this analysis. Selenium was analyzed by ICP-MS for the Second Semi-Annual 2013 GMR, and selenium concentrations were again elevated. Selenium concentrations are shown on Table 1, Figure 6, and the laboratory results provided on the attached CD. The cause of the selenium fluctuations is under further evaluation.

Mesa Wells

During this quarter, one well (LMW-3) was purged dry prior to sampling and groundwater samples from the following mesa wells exhibited silty conditions: LMW-2, LMW-3, LMW-4R LMW-7, LMW-9, LMW-10, KMW-12, and KMW-16. This is consistent with previous field

observations. These wells are all screened in the upper portion of the Muddy Creek Formation which is described as an interbedded fine-grained sand, silt, and clay formation. Over time, silt accumulates in the Mesa wells necessitating redevelopment or replacement of the wells. High silt content in wells can potentially compromise sample quality. As a precaution, samples are filtered by the laboratory prior to analysis to minimize the impact of the silt on the water quality results. TDS concentrations have remained relatively constant on the mesa, an indication of the comparability of sampling conditions, procedures, and analytical methods.

Hogan Wash Area

The Hogan Wash wells are located west of Pond 4B-3 between two mesas, one to the north and another to the south. Groundwater in this area ranges from 18 to 23 feet bgs. The subsurface lithology is comprised on interbedded sands, silts, and clay with varying amounts of gravel. These fine sediments result in wells that purge dry guickly and recharge.

Trend graphs of the Hogan Wash Area groundwater quality conditions were provided in the First Semi-Annual GMR 2012 and have been updated as seen in the Graphs Attachment section of this report. Sulfate concentrations are highest in KMW-1S with a slight overall decrease in concentrations since Third Quarter 2008 (~10,000 mg/L) and a significant decrease with depth in this well cluster (~40,000 mg/L). Sulfate concentrations in downgradient well KMW-19 have also decreased over time. TDS concentrations in this area, with the exception of a few outliers, show trends similar to sulfate.

Possible laboratory outliers were found this quarter in KMW-1D and KMW-20. The laboratory reanalyzed the samples and verified the original results. NVE will continue to observe conditions at these wells.

During this sampling event, KMW-1S was bailed dry at one gallon which is the equivalent of 1.5 well volumes and field personnel report that it typically recharges very slowly. Roots were noted on the field report for the third time. This well is screened from 10 to 25 ft bgs. The hydrograph in the Graphs Attachment section of this report shows that the groundwater elevation in KMW-1S varies seasonally and has decreased three to four feet overall since the well was installed in 1998. Because this well is nearly dry (~4 ft of water), NVE is considering abandonment of this well in 2014 as seen in the well maintenance table.

KMW-1M was pumped dry at 4 gallons, the equivalence of 1.1 well volumes. The purge and sample water was noted to have a yellow-brown color as documented in the field data forms. KMW-1D was pumped clear at 3 well volumes.

IMW-2SR was pumped dry at approximately 23 gallons, the equivalence of 1.3 well volumes. Roots were noted on the field report, and had also been previously noted. A sulfur odor had been previously noted but was not noted during this sampling event. This well is screened from 19 to 39 ft bgs and the depth to groundwater this quarter was approximately 22 ft bgs. This well was installed in the third quarter of 2011 and the screen is set in a varied lithology including silty sand, clay with sand and silt, sandy silt, sandy gravel, and sand. IMW-2D was pumped clear at three well volumes.

KMW-19 was covered with roots and the field technician was unable to collect a sample. This occurred for the first time this quarter and a water level can still be obtained. NVE will observe the status of this well at the next sampling event and consider ceasing sampling the well. Roots and silt were also noted in nearby well KMW-20 for the first time during this sampling event. These wells were added to the well maintenance table.

Unit 4B/C Pond Area Wells

All of the wells in Unit 4B and 4C pond area are completed in the alluvial aquifer. In general, these wells were installed in interbedded very fine sand, silt and clay with occasional gravel lenses. The fine sediments likely cause the wells to purge dry quickly and recharge slowly. Of the 19 wells in this area, 13 were purged dry prior to sampling this quarter.

MW-10RR, located on the west side of Pond 4C-2, was noted as having purge water with a light yellow hue and roots were noted on the pump head this quarter. There was approximately 16 feet of water column in the well; however, the well was pumped dry after 13 gallons or 1.2 well volumes. This well was installed in the second quarter of 2011 and screened from 6 to 16 ft bgs in deposits of interbedded sandy gravel, clayey sand, and lean clay. NVE will continue to watch the conditions at this well for chemical and physical changes.

Ten new four-inch diameter wells (MW-11 to MW-16) were installed around and in between Pond 4B and 4C during the first quarter of 2013. All the wells were pumped dry. The shallow wells were purged dry after 5-11 gallons or approximately 1.2 well volumes. The medium depth wells were purged dry after 14-21 gallons or approximately 1.1 well volumes. MW-11S, MW-11M, MW-12S, were noted as silty upon sample collection. MW-14S and MW-15 were noted as having a yellow color. Possible laboratory outliers were found this quarter in MW-15. The results seemed high compared to previous sampling data and the adjacent wells located south of the ponds. Because this is a newer well, there is limited data for comparison. The laboratory reanalyzed the samples and verified the original results. NVE will continue to observe conditions at MW-14S and MW-15.

Former Pond 4A Area Wells

NVE samples the CMW wells, located within and around former Pond 4A, to evaluate the groundwater quality and whether it changes with depth. These wells were redeveloped during the first quarter in 2013 due to observed silt accumulation and its potential to impact analytical results. Almost all of the shallow CMW wells were noted as having silty conditions during the first quarter of 2013 and this quarter. Based on these observations and the well completion logs it is inconclusive whether redevelopment had any impact. The Unit 4A Pond wells are completed in the alluvial aquifer which is described as being comprised of interbedded fine sand, silt and clay. NVE will continue to monitor the conditions in these wells.

During the last sampling event at MW-9 field personnel reported a strong decomposing organic odor while purging the first five gallons, and collected a clear water sample with a light sewage odor. During this sampling event, a slight sulphur odor was noted during the first 10 gallons, but the sample was again clear. The groundwater in downgradient well KMW-15 was noted to have a pale yellow color during this sampling event. Both of these wells were constructed in the upper portion of the alluvial aquifer. No laboratory outliers were found in either of these wells this quarter. NVE will continue to monitor the conditions at these wells.

MW-1R was pumped dry at 18 gallons or after 2.25 well volumes. The groundwater remained clear though roots were noted on pump upon removal from the well. NVE will continue to observe conditions at this location and has added the well to the well maintenance table.

Units 1, 2, 3 Pond Wells

The wells in the area of the Units 1, 2, and 3 ponds are all completed in the alluvial aquifer and, in general, do not produce much water. This is likely due to the subsurface lithology being comprised of very sandy, silt, and clay sediments. Of the 23 wells in this area, 19 were purged

dry prior to sampling this quarter. A yellow color was noted in seven wells located around the Unit 1,2,3 Ponds, P-15AR was noted as yellow-brown, and KMW-9 was noted as silty. Field personnel noted in the past that wells P-17A, P-17B, and P-18B, located around Pond F and near the Muddy River, recharge very slowly. Boring logs are not available for these wells, but it is understood that the wells were installed before the mid-1980s. As discussed in the fourth quarter 2011 GMR, a camera investigation revealed that these wells have 5-foot screen lengths. Another well in the area, P-18A, has been dry for several quarters. The camera investigation showed wooden debris clogging the casing. Considering the age of these four wells and the nature of the groundwater conditions in this area, the usefulness of these wells will be evaluated as part of the geologic data gaps and source area investigations.

The casing around well P-2, located at the east side of Pond E, was repaired during the first quarter of 2013. In the third quarter of 2012, field personnel had noted a yellow hue in this well but it was not noted during the first quarter of 2013. During this quarter a yellow color was again noted of the sample collected from P-2.

Potential outliers were noted in the P-8R fluoride samples. The laboratory reviewed their results and found a dilution error. Revised reports are included in the CD and reflected in the figures and tables. No other data outliers were noted this quarter.

A trend graph of TDS concentrations of the Former Pond D area can be found in the Graphs Attachment section of this report. Figure 9 is a contour map showing TDS concentrations from this quarter. Well P-8R exhibits the highest concentration of TDS in the Pond D area, however adjacent well P-7R to the east has the highest concentration site-wide. Concentrations have fluctuated from 80,000-160,000 since the third quarter of 2008; however the trend is relatively stable. Other wells in the area of Pond D also exhibit stable trends. Because solids were removed from 2010, it is not expected that these trends would start to increase.

KMW-9, considered to be a medium depth alluvial aquifer well, has exhibited high TDS concentrations and fluctuating groundwater levels. The well is screened from 50 to 60 feet bgs. As discussed in previous GMRs, it is possible that the bentonite seal or well casing are cracked, causing the water quality in the well to resemble the shallow groundwater quality. The camera investigation conducted in early 2012 did not identify well integrity issues. This well is planned to be abandoned and replaced with a downgradient well cluster on the adjacent BLM property to the south.

Well P-10 is located south of former Pond D and was previously noted as having organic material (roots). No unusual observations were noted during the last two sampling events. This well was constructed in 1998 and screened from 4 to 14 ft bgs in sandy clay with black organics at 12 ft bgs. Because the well was pumped dry 4 gallons or 1.2 well volumes, and roots were observed in the past, the well screen may be breached or the filter pack may be clogged. NVE will continue to observe the conditions at this well and may consider abandonment in the future if roots reappear in this well.

Dissolved Chlorinated Solvent Area Wells

Product has been noted in HM-50R and HM-48 since the third quarter of 2011 and second quarter of 2012, respectively. HM-50R was replaced in the third quarter 2011 and is adjacent to a known source of petroleum and solvents, the lube oil rack. However, free product was not previously noted in HM-50. Free product removal activities for these wells are further discussed in the Diesel Recovery Discussion section in this report.

HM-8 was the only well sampled in this area this quarter. Field personnel described the water sample as being silty and brown, consistent with previous quarters. No laboratory outliers were found in this well during this quarter.

WMU-12 Area Wells

HM-60 well located west of the Units 1,2,3 coal pile between Units 1 and 2, was pumped dry at 11 gallons or 1.3 well volumes. In the past it was noted that the groundwater had a light yellow hue and was slightly silty. During this sampling event clear water was noted during pumping.

Groundwater from HM-32R, also located west of the Units 1,2,3 coal pile, was noted as having a slightly yellow hue in the past; however no unusual observations were reported this quarter or last quarter. No outliers were found in the laboratory data for these three wells when compared to the past analytical results.

Well HM-20, located east of the Units 1,2,3 coal pile, was noted as having free product. Product has been measured in this well since 2003 and is equipped with a passive free product recovery device. Nearby well HM-24 was noted as having a sheen on the groundwater according to the field notes. This was also observed during the three previous sampling events. The sample collected was described as having a sheen as well. NVE will continue to observe conditions at HM-20 and HM-24.

The sample collected from HM-31R, also east of the coal pile, was noted as having a green/grey sheen consistent with the previous quarters. This well was also pumped dry after 8 gallons or 1.2 well volumes. Another well in the area, HM-28, was noted as having slightly silty conditions, consistent with previous quarters.

HM-54, located downgradient of the Unit 4 coal pile, was noted as having a light orange hue to the groundwater for the first time last quarter. This quarter the orange color was noted during purging, but not noted in the sample collected.

No laboratory outliers were found in the analytical data associated with these wells this quarter.

Former ASP-1,2, 3 Area Wells

Two of the five wells in this area were bailed dry. IMW-17 was noted as very silty during the last five to seven gallons purged. No laboratory outliers were found in the analytical data associated with these wells this quarter.

Diesel Recovery Discussion

On July 1, 2013, NV Energy received a concurrence letter from Ms. Alison Oakley for the Revised Diesel Remediation System Design Work Plan providing incorporation of the letter's Attachment A comments into the Final Interim Diesel Remediation System Design Work Plan. Incorporation of Attachment A comments was completed on July 25, 2013. The Work Plan indicated that the remediation system upgrades would be ordered, installed, and operational within 6 months. During third quarter 2013, remediation system components were ordered and awaiting delivery for installation.

Passive and remediation system product recovery occurred during second quarter 2013. Remediation system product recovery occurred intermittently for testing to determine system

upgrades. During third quarter 2013, the remediation system was down for maintenance and upgrades. Passive product recovery continued during third quarter 2013.

The table below summarizes the volume of diesel fuel removed during second and third quarters 2013 and the total fluids removed historically. The table does not include 250,000 gallons of diesel fuel that was recovered at the Reid Gardner Station prior to the fourth quarter 2003.

REID GARDNER DIESEL	Second and Third Quarters 2013	TOTALS
RECOVERY	TOTAL	FLUID DIESEL
	DIESEL FUEL (GAL)	(GAL) (GAL)
Dual Phase	419	2,354,820 22,114
Extraction		
Additional Recovery (passive recovery)	53	30,197 1,190
Total Recovery	472	2,385,017 23,304
Total Necovery	412	2,385,017 23,304

Pond D/E Groundwater Recovery

During the second and third quarters of 2013, a total of 90 gallons of groundwater was recovered and placed into ponds. The Pond D/E recovery sump pumps were operated automatically during the referenced period. The following table summarizes the Pond D/E groundwater recovery effort.

REID GARDNER POND D/E RECOVERY SUMPS	2 nd /3 rd Qtr 2013	TOTAL (Since inception)
E POND Gallons Pumped	0	465,030
D POND Gallons Pumped	90	2,363,949

Administrative Order on Consent (AOC) Activities

The following summary of Administrative Order on Consent (AOC) activities for the fourth quarter of 2013 (October - December) is provided in accordance with Section XII of the AOC that was signed by NV Energy and NDEP on February 22, 2008:

a) Actions taken:

- Prepared meeting minutes from the August 28, 2013 quarterly AOC meeting and submitted to the NDEP on October 3, 2013.
- Prepared for and attended quarterly AOC implementation meeting with NDEP on October 16, 2013.
- Prepared meeting minutes from the October 16, 2013 quarterly AOC meeting and submitted to the NDEP on December 30, 2013.
- Continued implementation of the revised Interim Diesel Remediation System Design Work Plan that was submitted to NDEP on July 25, 2013.

- Continued work on the Conceptual Site-wide Model (CSM) visualization using ArcGIS software.
- Continued preparation of a Work Plan for Muddy River data collection to develop a preliminary flow balance for the Muddy River as it travels through the Station.
- Prepared for and attended a GoToMeeting with the NDEP on December 10, 2013 to discuss preliminary comments on the Background Conditions Report.
- Continued to maintain and update the Encyclopedia of Supporting Documentation as additional information became available.
- Continued to maintain and update the geodatabase as additional information became available.
- Continued to coordinate with laboratory and groundwater sampling consultant with respect to the Groundwater Monitoring Report (GMR) semi-annual monitoring.

b) Summary of field activities for fourth quarter 2013 (October - December):

Groundwater sampling was conducted in November and December 2013. The data will be summarized in the annual Groundwater Monitoring Report (GMR) that will be submitted to the NDEP by January 28, 2014. No additional field activities pertaining to the AOC were conducted during the fourth quarter 2013.

c) Deliverables completed and submitted:

- The Draft Background Conditions Report was submitted to the NDEP on October 4, 2013.
- Data Validation Reports for Fourth Quarter 2012 Background Groundwater Sampling and Pond F Soil Sampling that were submitted to the NDEP in April 2013 were approved on October 15, 2013.
- The Pond F Solids Removal Completion Report was finalized based on NDEP comments dated September 27, 2013 and submitted to the NDEP on October 30, 2013. NDEP approved the report on November 8, 2013.

d) Activities accomplished or planned for the next guarter and schedule update:

- Evaluation of Background Conditions NVE will prepare workshop materials and provide them to the NDEP prior to the January 29, 2014 workshop. The Draft Background Conditions Report will be revised based on NDEP input at the workshop and receipt of formal comments.
- Ponds 4A/C1/C2 Solids Removal Work Plans NVE will prepare Draft Solids Removal Work Plans for Ponds 4A, C1 and C2 and provide to the NDEP for review.
- Muddy River Work Plan A Work Plan for Muddy River data collection to develop a
 preliminary flow balance for the Muddy River as it travels through the Station will be
 submitted to the NDEP.
- Free Product Investigation NVE will submit a work plan to conduct a Laser Induced Fluorescence (LIF) Investigation in the area of Former Underground Product Piping, Petroleum Tanks (Source Area 14).
- Encyclopedia of Supporting Documentation NVE will continue to maintain the Encyclopedia of Supporting Documentation as new documents become available.
- Quarterly Meetings NVE will prepare for and attend a quarterly AOC implementation meeting with NDEP on January 29, 2014. This will include a

workshop to discuss the Draft Background Conditions Report. Meeting minutes will be prepared and submitted to the NDEP.

- Monthly AOC Status Update Reports NVE will continue to provide monthly status reports and schedules to the NDEP by e-mail.
- Diesel Recovery System NVE will complete implementation of the interim work plan.

e) Unresolved delays encountered or anticipated and efforts to mitigate them:

No unresolved delays were encountered or anticipated.

f) Modifications to plans or schedules:

Updated tentative AOC implementation schedules are uploaded to FilesAnywhere monthly.

g) Community relations activities completed the previous quarter and planned for the next quarter:

Electronic copies of NDEP-approved Data Validation Reports for Fourth Quarter 2012 Background Groundwater Sampling and Pond F Soil Sampling were provided to the NDEP to post on the website on October 30, 2013 and hard copies were provided to the Moapa Band of Paiutes and Moapa Library on October 30, 2013.

Electronic copies of the NDEP-approved Pond F Solids Removal Completion Report were provided to the NDEP to post on the website on November 12, 2013 and hard copies were provided to the Moapa Band of Paiutes and Moapa Library on November 12, 2013.

The Community Relations Fact Sheet and figure located on the NDEP website was updated and provided to the NDEP on October 28, 2013.

NVE will provide suggested wording changes for the Reid Gardner Station overview on the NDEP Bureau of Corrective Actions website. NVE will also continue to provide copies of NDEP-approved deliverables to the Moapa Band of Paiutes and the document repository that is maintained at the Moapa Public Library in Moapa, Nevada.

If you have any question regarding this report, please contact the undersigned at (702) 402-5958.

Sincerely,

Jason Reed

Staff Environmental Engineer CEM #1978, Expiration 5/18/16

cc: Tony Garcia - NV Energy

John Kivett – Arcadis Brad Cross – Arcadis

Darren Daboda - Moapa Band of Paiutes

Attachments:

Jurat Letters

Figure 1A – Site Monitoring Locations

Figure 1B - Diesel Plume Area Monitoring Locations

Figure 2A - Shallow Groundwater Contour and Site Location Map (11 X 17")

Figure 2B - Shallow Groundwater Contour Facility Map (11 X 17")

Figure 3 - Dissolved Arsenic Contour Map (11 X 17")

Figure 4 - Dissolved Magnesium Contour Map (11 X 17")

Figure 5 - Dissolved Manganese Contour Map (11 X 17")

Figure 6 - Dissolved Selenium Contour Map (11 X 17")

Figure 7 - Dissolved Sodium Contour Map (11 X 17")

Figure 8 - Dissolved Sulfate Contour Map (11 X 17")

Figure 9 - Total Dissolved Solids Contour Map (11 X 17")

Figure 10 - Diesel Recovery Area Product Thickness Contour Map (11 X 17")

Table 1 – Second Semi-Annual 2013 Monitoring and Sampling Results (Wells)

Table 1A – Quarterly Diesel Recovery Area Monitoring Well Product Levels

Table 3 – Second Semi-Annual 2013 Monitoring and Sampling Results (Muddy River and Spring)

Table 4 – Groundwater Elevations Second Semi-Annual 2013

Table 5 - Well Maintenance

Corrections - Second Semi-Annual 2013 Table 1 Missing Page

Graphs - Hogan Wash and Former Pond D Areas

Annual Sampling Record

CD Contents:

Second Semi-Annual 2013 Reid Gardner Groundwater Monitoring Report

Environmental Consultant Jurat Letters

Figure 1A – Site Monitoring Locations (11 X 17")

Figure 1B – Diesel Plume Area Monitoring Locations (11 X 17")

Figure 2A - Shallow Groundwater Contour and Site Location Map (11 X 17")

Figure 2B - Shallow Groundwater Contour Facility Map (11 X 17")

Figure 3 - Dissolved Arsenic Contour Map (11 X 17")

Figure 4 - Dissolved Magnesium Contour Map (11 X 17")

Figure 5 - Dissolved Manganese Contour Map (11 X 17")

Figure 6 - Dissolved Selenium Contour Map (11 X 17")

Figure 7 - Dissolved Sodium Contour Map (11 X 17")

Figure 8 - Dissolved Sulfate Contour Map (11 X 17")

Figure 9 - Total Dissolved Solids Contour Map (11 X 17")

Figure 10 - Diesel Recovery Area Product Thickness Contour Map (11 X 17")

Table 1A - Quarterly Diesel Recovery Area Monitoring Well Product Levels

Table 3 - Second Semi-Annual 2013 Monitoring and Sampling Results (Muddy River and Spring)

Table 4 – Groundwater Elevations Second Semi-Annual 2013

Table 5 – Well Maintenance

Annual Sampling Record

Field Log Sheets Q1 2013

Excel Monitoring and Sampling Database

Laboratory Analysis Data - Example File = V13H034 Unit 4 Pond Wells.pdf

JURATS

Certifications

NVE Certification

I certify that this document and all attachments submitted to the Division were prepared under the direction or supervision of NV Energy (NVE) in accordance with a system designed to gather and evaluate the information by appropriately qualified personnel. Based on my inquiry of the person or persons who manage the system(s) or those directly responsible for gathering the information, or the immediate supervisor of such person(s), the information submitted and provided by NVE is, to the best of my knowledge and belief, true, accurate, and complete in all material respects. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Name: Kevin Geraghty

Title: Vice President, Power Generation

Company: NV Energy

Date: 1/27/2014

Certified Environmental Manager Certification

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state and local statutes, regulations and ordinances.

Services Provided:	Preparation of the Third Quarter 2012 Quarterly Groundwater Monitoring Report for the Reid Gardner Station Facility
Name:	Jason Reed
Title:	Staff Environmental Engineer
Company:	NV Energy
CEM Certification Number:	1978
CEM Expiration Date:	5/18/2016
Signature:	Jantin
Date:	01-27-14

Certified Environmental Manager (CEM) Certification

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state and local statutes, regulations and ordinances.

Signature: Rebecca L. Svatos

Title: Senior Technical Advisor

Company: Stanley Consultants

Date: /13/2014

EM Certificate Number EM-1931

EM Expiration Date: 9/30/2015

September 3, 2013

Mr. Jason Reed NV Energy 6226 W. Sahara Avenue Las Vegas, NV 89146

Subject: Third Quarter 2013 Groundwater, Pond, and River Sampling

NV Energy - Reid Gardner Station

Moapa, Nevada

Dear Jason:

In accordance with Purchase Order No. 0001024889, dated December 22, 2010, modified December 19, 2012 (Modification 2), OGI Environmental, LLC (OGI) has completed groundwater, river and pond sampling at the above referenced site during the third quarter, 2013. Water samples were collected from 107 monitoring wells, six pond locations (all leachate samples), one EFPS location, five river locations and one spring location and were submitted to Veritas Laboratories, a Nevada-certified laboratory, for testing. Well gauging only was conducted by OGI August 27, 2013 on 27 additional wells associated with the Diesel Recovery System (to evaluate free product thickness). Two wells were gauged during well sampling, but could not be sampled because they were dry (Wells P-18A and well LMW-17). OGI collected 20 quality control samples, including ten duplicates (wells LMW-5R, LMW-6R, MW-1R, MW-13, P-8R, IMW-12.5R, HM-8, HM-24, pond sample location B-2 and river sample location MR-4), five equipment blanks and five field blanks.

Should you have any questions regarding the work completed by OGI, please do not hesitate to contact the undersigned at (702) 804-5545.

Sincerely,

OGI ENVIRONMENTAL, LLC

Robert N. Thompson, P.G, CEM

Managing Principal

Nevada CEM No. EM-1246 (exp. 1-5-15)

I hereby certify that all laboratory analytical data was generated by a laboratory certified by the NDEP for each constituent and media presented herein.

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state, and local statutes, regulations, and ordinances.

FIGURES

1/13/14 CC AE TK

Submittal to NDEP

-4.	20618.08.09
NV Energy.	REV. 0

At full size

1 inch = 1,100 feet

Damaged Pond Outline Dry Figure 1B Map Area Abandoned / Destroyed **GMR Monitoring Locations** Free Product Gauging Sampled or Gauged Sampled or Gauged Damaged 8 Damaged Dry Abandoned / Destroyed 0 Abandoned / Destroyed Existing - Not Sampled Hand Bail Surface Water Monitoring Locations Surface Water Sampling 0 Damaged Surface Water Elevation Dry 0 Abandoned / Destroyed Passive Recovery Existing - Not Sampled Sampled or Gauged Damaged Sampled or Gauged Dry Damaged 0 Abandoned / Destroyed Abandoned / Destroyed Existing - Not Sampled Sampled or Gauged Damaged Former Remediation Trench Dry Abandoned / Destroyed 0 Abandoned / Destroyed 2,200 Notes:

1. Primary aerial flown January 2, 2009 and updated September 2010

2. Secondary aerial imagery provided by USDA-FSA Aerial Photography
Field Office; published 2/22/2011; photographs taken late Spring 2010

3. Sampling locations current as of 1st Quarter 2013

4. MR Downstream gauging location is either the lower or upper culvert

5. Information for wells located within the yellow inset is available on Figure 1B

6. This figure shows all monitoring locations at Reid Gardner Station,
not just those monitored this period

Dewatering

Stanley Consultants INC.

January 2014

MONITORING LOCATIONS 2013 Semi-Annual GMR **AOC** Implementation **NV Energy** Reid Gardner Station Moapa, NV Figure 1A

NVEnergy.

20618.08.09

REV. 0

Hand Bail

- Property Boundary **GMR Monitoring Locations**
- Sampled or Gauged Damaged
 - Dry
 - O Abandoned / Destroyed

Passive Recovery

- Sampled or Gauged
- Damaged
- Dry
- Abandoned / Destroyed

Vapor Extraction

- Sampled or Gauged
- Damaged
- Dry
- Abandoned / Destroyed

- 1. Aerial flown January 2, 2009 and updated September 2010
- Sampling locations current as of 3rd Quarter 2013
 This figure shows all monitoring locations at Reid Gardner Station, not just those monitored this period

January 2014

STATION AREA MONITORING LOCATIONS 2013 Semi-Annual GMR **AOC** Implementation **NV Energy** Reid Gardner Station Moapa, NV Figure 1B

REV No. REVISION DESCRIPTION DATE DRWN CHKD APVD 1/13/14 CC AE TK Submittal to NDEP

At full size 1 inch = 175 feet

1/13/14 CC JO TK/AE

Submittal to NDEP

At full size 1 inch = 1,100 feet

20618.08.09

REV. 0

Legend

Monitoring Wells (2013 Q3)

- Deep or Medium
- Shallow
- Dewatering
- ◆ Free Product Gauging
- Hand Bail
- Passive Recovery
- Vapor Extraction
- Dewatering Locations / Water Sources
- Surface Water Elevation
- Groundwater Elevation Contour (ft)
- Groundwater Elevation Contour (Inferred) (ft)
- Pond Slurry Walls
- Muddy River
- ___ Property Boundary
- Figure 2B Map Area

- Notes:

 1. Aerial flown January 2, 2009 by AeroTech Mapping; updated September 2010

 2. Information for wells located within the yellow inset is available on Figure 2B

 3. Shallow, medium, and deep well classifications are subject to change

 4. Elevations at deep and medium wells are not contoured

 5. Only wells gauged this quarter are shown in figure

January 2014

SHALLOW GROUNDWATER ELEVATION **CONTOUR MAP** 2013 Semi-Annual GMR **AOC** Implementation **NV** Energy Reid Gardner Station Moapa, NV Figure 2A

Legend

Diesel Area Well Types (Active)

- Dewatering
- ♦ Free Product Gauging
- Hand Bail
- Passive Recovery
- Vapor Extraction
- Monitoring Wells (2013-Q3)
- -- Groundwater Elevation Contour (Inferred) (ft)
- --- Property Boundary

175	87.5	0	175	350
				Feet

- 1. Aerial flown January 2, 2009 by AeroTech Mapping and updated September 2010
- Monitoring wells with free product were not used in contouring
 NA = Not Accessible

January 2014

STATION AREA SHALLOW GROUNDWATER ELEVATION 2013 Semi-Annual GMR **AOC** Implementation **NV Energy** Reid Gardner Station Moapa, NV Figure 2B

At full size

1 inch = 175 feet

1/13/14 CC JO TK/AE

Submittal to NDEP

REV.

NVEnergy...

8	REV	No.	REVISION DESCRIPTION	DATE	DRWN	CHKD	APVD
89							
F\20618							
					1		\vdash
					-		\vdash
톏							\vdash
Icy-fs1\Projects	0		Submittal to NDEP	1/13/14	CC	JO	TK/AE

At full size 1 inch = 1,100 feet

20618.08.09

REV. 0

Legend

Monitoring Wells (2013 Q3)

- Deep or Medium
- Shallow
- —— Arsenic Concentration Contour (mg/L)
- Arsenic Concentration Contour (mg/L) (Inferred)
- Muddy River
- --- Property Boundary

1,100	550	0	1,100	2,200
				Fee

- Notes: 1. Aerial flown January 2, 2009 by AeroTech Mapping and updated September 2010
- When concentration value is less than the laboratory detection limit, the value used for contouring is 1/2

- the laboratory detection limit

 3. Shallow, medium, and deep well classifications are subject to change

 4. Concentrations at deep and medium wells are not contoured

 5. *MW-12S, MW-13, P-8R not considered for contouring due to high detection thresholds; P-9R data not considered for contouring

 6. NS = well not gauged or sampled, NA = no well access, FP = well with free product

January 2014

DISSOLVED ARSENIC CONCENTRATION SHALLOW WELLS 2013 Semi-Annual GMR **AOC** Implementation **NV Energy** Reid Gardner Station Moapa, NV Figure 3

REVISION DESCRIPTION DATE DRWN CHKD APVD REV No. Submittal to NDEP 1/13/14 CC JO TK/AE

At full size 1 inch = 1,100 feet

20618.08.09

REV.

Legend

Monitoring Wells (2013 Q3)

- Deep or Medium
- Shallow
- Magnesium Concentration Contour (mg/L)
- Magnesium Concentration Contour (mg/L) (Inferred)
- Muddy River
- --- Property Boundary

,100 550 0 1,100 2,20	
.100 550 0 1,100 2,20	00

- Aerial flown January 2, 2009 by AeroTech Mapping and updated September 2010
- When concentration value is less than the laboratory detection limit, the value used for contouring is 1/2 the laboratory detection limit
- Shallow, medium, and deep well classifications are subject to change
 Concentrations at deep and medium wells are not contoured

- 5. *P-9R data not considered for contouring
 6. NS = well not gauged or sampled, NA = no well access,
 FP = well with free product

January 2014

DISSOLVED MAGNESIUM CONCENTRATION SHALLOW WELLS

2013 Semi-Annual GMR **AOC** Implementation **NV** Energy Reid Gardner Station Moapa, NV Figure 4

REVISION DESCRIPTION REV No. 1/13/14 CC JO TK/AE Submittal to NDEP

At full size 1 inch = 1,100 feet

20618.08.09 REV.

Legend

Monitoring Wells (2013 Q3)

- Deep or Medium
- Shallow
- Manganese Concentration Contour (mg/L)
- Manganese Concentration Contour (mg/L) (Inferred)
- Muddy River
- --- Property Boundary

				Feet
100	550	0	1,100	2,200

- 1. Aerial flown January 2, 2009 by AeroTech Mapping and updated
- September 2010

 2. When concentration value is less than the laboratory detection limit, the value used for contouring is 1/2 the laboratory detection limit

 3. Shallow, medium, and deep well classifications are subject to change 4. Concentrations at deep and medium wells are not contoured 5. *P-9R, CMW-3S data not considered for contouring 6. NS = well not gauged or sampled, NA = no well access, FP = well with free product

January 2014

Figure 5

DISSOLVED MANGANESE CONCENTRATION SHALLOW WELLS 2013 Semi-Annual GMR **AOC** Implementation **NV Energy Reid Gardner Station** Moapa, NV

REV	No.	REVISION DESCRIPTION	DATE	DRWN	CHKD	APVD
0		Submittal to NDEP	1/13/14	CC	JO	TK/AE

At full size 1 inch = 1,100 feet

20618.08.09

REV.

Legend

Monitoring Wells (2013 Q3)

- Deep or Medium
- Shallow
- Selenium Concentration Contour (mg/L)
- Selenium Concentration Contour (mg/L) (Inferred)
- Muddy River
- --- Property Boundary

- Aerial flown January 2, 2009 by AeroTech Mapping and updated September 2010
- September 2010

 2. When concentration value is less than the laboratory detection limit, the value used for contouring is 1/2 the laboratory detection limit

 3. Shallow, medium, and deep well classifications are subject to change

 4. Concentrations in deep and medium wells not contoured

 5. *P-9R not considered for contouring

 6. NS = well not gauged or sampled, NA = no well access, FP = well with free product

January 2014

DISSOLVED SELENIUM CONCENTRATION SHALLOW WELLS 2013 Semi-Annual GMR **AOC** Implementation **NV Energy** Reid Gardner Station Moapa, NV Figure 6

2	REV	No.	REVISION DESCRIPTION	DA	IE	DRWN	CHKD	APVD
F\20618								
2					\neg			
rojects								П
fs1/Pre								
NCY-fs	0		Submittal to NDEP	1/13	/14	CC	JO	TK/AE

20618.08.09

REV.

Legend

Monitoring Wells (2013 Q3)

- Deep or Medium
- Shallow
- Sodium Concentration Contour (mg/L)
- Sodium Concentration Contour (mg/L) (Inferred)
- Muddy River
- --- Property Boundary

,100	550	0	1,100	2,200
				Feet

Notes:

- Aerial flown January 2, 2009 by AeroTech Mapping and updated September 2010
- September 2010
 When concentration value is less than the laboratory detection limit, the value used for contouring is 1/2 the laboratory detection limit
 Shallow, medium, and deep well classifications are subject to change
 Concentrations in deep and medium wells not contoured
 *P-9R data not considered for contouring
 NS = well not gauged or sampled, NA = no well access, FP = well with free product

January 2014

DISSOLVED SODIUM CONCENTRATION SHALLOW WELLS 2013 Semi-Annual GMR **AOC** Implementation **NV Energy** Reid Gardner Station Moapa, NV Figure 7

REV	No.	REVISION DESCRIPTION	DATE	DRWN	CHKD	APVD
0		Submittal to NDEP	1/13/14	СС	JO	TK/AE

20618.08.09

REV.

Legend

Monitoring Wells (2013 Q3)

- Deep or Medium
- Shallow
- Sulfate Concentration Contour (mg/L)
- Sulfate Concentration Contour (mg/L) (Inferred)
- Muddy River
- --- Property Boundary

1,100	550	0	1,100	2,200
				Feet

- Notes: 1. Aerial flown January 2, 2009 by AeroTech Mapping and updated September 2010
- September 2010

 2. When concentration value is less than the laboratory detection limit, the value used for contouring is 1/2 the laboratory detection limit

 3. Shallow, medium, and deep well classifications are subject to change

 4. Concentrations of deep and medium wells not contoured

 5. *P-9R data not considered for contouring

 6. NS = well not gauged or sampled, NA = no well access, FP = well with free product

January 2014

DISSOLVED SULFATE CONCENTRATION SHALLOW WELLS 2013 Semi-Annual GMR **AOC** Implementation **NV** Energy Reid Gardner Station Moapa, NV Figure 8

DATE DRWN CHKD APVD

1/13/14 CC JO TK/AE

REVISION DESCRIPTION

REV No.

Submittal to NDEP

NVEnergy.

At full size

1 inch = 1,100 feet

20618.08.09

REV. 0

Monitoring Wells (2013 Q3)

- Deep or Medium
- Shallow
- TDS Concentration Contour (mg/L)
- TDS Concentration Contour (mg/L) (Inferred)
- Muddy River
- --- Property Boundary

2,200

Notes:

- Notes:

 1. Aerial flown January 2, 2009 by AeroTech Mapping and updated September 2010

 2. When concentration value is less than the laboratory detection limit, the value used for contouring is 1/2 the laboratory detection limit

 3. Shallow, medium, and deep well classifications are subject to change

 4. Concentrations of deep and medium wells not contoured

 5. *P-9R not considered for contouring

 6. NS = well not gauged or sampled, NA = no well access, FP = well with free product

January 2014

TOTAL DISSOLVED SOLIDS (TDS) **CONCENTRATION - SHALLOW WELLS** 2013 Semi-Annual GMR **AOC** Implementation **NV** Energy Reid Gardner Station Moapa, NV Figure 9

REV	No.	REVISION DESCRIPTION	DATE	DRWN	CHK	APVD			20618.
				T	Г		0 , 1in.		
-	-			_	_	+	At full size	DIVIE	RE
-	_			+	+-	+-1		NV Energy.	C
				-	-	+	1 inch = 175 feet	200 2110.07	
0		Submittal to NDEP	1/13/14	I CC	JO	TK/AE			

8.08.09

REV. 0

January 2014

350

PRODUCT THICKNESS 2013 Semi-Annual GMR **AOC** Implementation **NV Energy** Reid Gardner Station Moapa, NV Figure 10

TABLES

Table 1 - Monitoring Well Sampling Results
3rd Quarter 2013
NV Energy - Reid Gardner Station
Unit 1,2,3 Pond Wells

	P-11 8/19/2013	P-10 8/19/2013	P-12 8/19/2013	P-13R 8/19/2013	P-14R 8/19/2013	P-21 8/19/2013	P-9R 8/19/2013	8/20/2013	8/20/2013	8/19/2013
Parameter Name	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
General Chemistry						+				
ph (field)	79.7	7.46	7.85	8.12	7.84	7.68	7.56	7.7	AN	7.44
General Chemistry (µmhos/cm)										
Specific Conductance	8540	27,300	0899	24,700	24,600	8700	11,310	93,600	91,600	9530
General Chemistry (mg/L)										
Alkalinity - Bicarbonate	115	NA	A	NA	NA	NA	NA	829	968	704
Alkalinity - Carbonate	< 20	NA	Ā	NA	NA	NA	A	< 20	< 20	< 20
Chloride	200	4500	460	3200	3800	720	1600	0069	8000	540
Nitrogen, Nitrate (as N)	4.1	< 0.5	1.9	< 0.5	1.1	0.88	< 0.5	< 0.5	< 0.5	< 0.5
Sulfate	2800	14,000	3500	15,000	12,000	4700	0069	110,000	120,000	4700
Sulfide	Ą	< 0.05	AN	NA	A	NA	< 0.05	< 0.05	< 0.05	NA
Sulfite	AN A	<2	AN	Ą	NA	NA	<2	<2	<2	NA
Suspended Solids (residue, non-filterable)	N A	2237	Ą	NA	AN	NA	902	80	274	AN
Total Dissolved Solids (residue, filterable)	5260	27,420	5772	24,480	22,720	7930	10,030	159,800	99,200	8510
Total Organic Carbon	NA	6.3	NA	NA	NA	NA	1.2	21	19	NA
General Chemistry (NTU)								The state of the s		
Turbidity	NA	1790	NA	NA	AN	NA	427	83.5	159	AN
Metals (mg/L)										
Arsenic, Dissolved	< 0.02	0.37	0.046	0.15	0.025	0.074	< 0.02	× 0.4	< 0.2	0.26
Beryllium, Dissolved	< 0.003	> 0.006	< 0.003	> 0.006	> 0.006	< 0.003	< 0.003	< 0.018	< 0.006	< 0.003
Boron, Dissolved	6.3	20	5.3	100	140	12	20	670	710	13
Cadmium, Dissolved	< 0.003	> 0.006	< 0.003	> 0.006	900'0 >	< 0.003	< 0.003	< 0.018	> 0.006	< 0.003
Calcium, Dissolved	450	200	390	550	540	460	450	280	550	460
Chromium, Dissolved	0.015	< 0.01	0.022	< 0.01	< 0.01	< 0.005	< 0.005	< 0.03	< 0.01	< 0.005
Fluoride, Dissolved	NA A	4.1	ΑN	NA	Ā	AN	< 0.5	11	22	NA
Magnesium, Dissolved	200	1500	200	1300	340	290	280	3400	3700	250
Manganese, Dissolved	< 0.005	1.0	0.0071	2.9	0.016	0.28	0.37	5.6	5.7	0.10
Molybdenum, Dissolved	0.075	0.97	0.097	1.9	1.1	0.14	0.12	0.65	99'0	0.028
Nickel, Dissolved	< 0.005	< 0.01	< 0.005	0.45	0.040	< 0.005	0.0072	0.30	0.29	0.0054
Potassium, Dissolved	82	370	57	760	420	62	110	1200	1200	25
Selenium, Dissolved	0.054	0.039	0.048	< 0.05	0.040	0.026	0.015	0.15	0.13	0.0098
Sodium, Dissolved	720	6400	1200	0099	9890	1700	2000	46,000	26,000	1900
Strontium, Dissolved	NA NA	14	Ą	ΑN	AN	AN	10	12	16	NA
Titanium, Dissolved	< 0.005	< 0.01	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005	< 0.03	< 0.01	< 0.005
Vanadium, Dissolved	< 0.003	< 0.006	< 0.003	< 0.006	< 0.006	< 0.003	< 0.003	< 0.018	< 0.006	< 0.003
Zinc, Dissolved	NA	< 0.01	AN	NA	NA	NA	< 0.005	< 0.03	< 0.01	AN

Table 1 - Monitoring Well Sampling Results
3rd Quarter 2013
NV Energy - Reid Gardner Statiion
Mesa Wells

	KMW-12	8/21/2013
	LMW-4R	8/21/2013
LMW-5R	Duplicate	8/21/2013
	LMW-5R	8/21/2013
LMW-6R	Duplicate	8/20/2013
	LMW-6R	8/20/2013
	LMW-3	8/21/2013
		8/21/2013
	LMW-2	8/21/2013
	KMW-16	8/20/2013
	LMW-10	8/20/2013
	LMW-9	8/20/2013
	LMW-7	8/20/2013

Parameter Name	Result	Recult	Recuit	Recuit									
(feet)													
DTW	140	127	141	140	110	100	94	139	NA	137	NA	139	152
GW Elevation	1601	1607	1610	1600	1592	1590	1591	1599	AN	1595	AN	1595	1590
General Chemistry													
ph (field)	7.43	7.48	7.84	7.62	7.37	7.2	7.29	7.34	AN	7.42	NA	7.51	7.42
General Chemistry (µmhos/cm)													
Specific Conductance (field)	3230	3960	4600	2570	5550	0869	5740	6250	NA	5650	NA	2860	4790
Specific Conductance	3180	3690	5020	2520	5440	0229	6010	5630	2600	5330	5330	5620	4660
General Chemistry (mg/L)													
Alkalinity - Bicarbonate	NA	NA	NA	NA	AN	ΝΑ	ΑN	AN	AN	AN	NA	105	NA
Alkalinity - Carbonate	NA	AN	NA	NA	N A	AN	AN	AN	AN	NA	AN	< 20	NA
Chloride	310	360	490	140	200	890	290	009	009	480	480	510	390
Nitrogen, Nitrate (as N)	5.7	5.1	8.6	1.6	1.6	< 0.5	2.7	2.5	2.5	4.7	4.7	5.4	3.7
Sulfate	1300	1700	2200	1200	2500	3000	2800	2500	2500	2400	2500	2600	2200
Total Dissolved Solids (residue, filterable)	2590	3246	4126	2160	4644	5824	5272	4816	4784	4616	4648	4708	3968
Metals (mg/L)													
Antimony, Dissolved	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
Arsenic, Dissolved	< 0.02	< 0.02	< 0.02	0.049	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Barium, Dissolved	0.018	0.0084	0.0000	9900:0	0.0064	0.0081	9900.0	0.0084	0.0088	6900.0	0.0066	0.0099	0.0064
Beryllium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Boron, Dissolved	2.3	2.0	7.9	1.0	5.8	3.9	6.7	7.4	7.9	6.9	6.9	7.1	4.8
Cadmium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Calcium, Dissolved	230	320	310	200	420	620	460	370	370	430	430	340	380
Chromium, Dissolved	0.0075	0.097	0.0051	0.037	< 0.005	< 0.005	0.0052	0.026	0.026	0.017	0.016	0.015	0.013
Copper, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fluoride, Dissolved	1.1	2.7	1.4	3.0	1.9	1.9	1.2	2.2	2.3	1.3	1.3	2.2	1.8
Iron, Dissolved	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.19	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Lead, Dissolved	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
Magnesium, Dissolved	110	150	140	120	180	240	210	180	170	200	200	160	170
Manganese, Dissolved	0.0052	< 0.005	< 0.005	< 0.005	< 0.005	0.025	0.010	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Mercury, Dissolved	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Molybdenum, Dissolved	0.020	0.16	060.0	0.17	0.068	0.057	0.042	690.0	690.0	0.042	0.041	0.077	0.041
Nickel, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0087	0.0086	0.0093	< 0.005	< 0.005	< 0.005	< 0.005
Potassium, Dissolved	26	39	9/	29	64	29	57	44	45	7.5	9/	29	09
Selenium, Dissolved	0.023	0.036	0.091	0.029	0.024	0.0060	0.018	0.062	0.064	0.031	0.035	0.043	0.016
Sodium, Dissolved	310	340	089	190	730	880	840	780	790	730	730	920	570
Thallium, Dissolved	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Titanium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium, Dissolved	< 0.003	< 0.003	< 0.003	0.0035	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003

Table 1 - Monitoring Well Sampling Results
3rd Quarter 2013
NV Energy - Reid Gardner Station
Unit 1,2,3 Pond Wells

IMW-16S 8/22/2013	Result														e	eldi:	ssə:	ээ	tot	q' ہ	əjdi	mes	2 10	N													
P-20B 8/19/2013	Result		7.81		4360		NA	NA	420	< 0.5	2300	NA	NA	NA	3922	Ą		NA		0.028	< 0.003	2.7	< 0.003	450	< 0.005	NA	220	0.50	0.10	< 0.005	48	0.0048	390	ΑN	< 0.005	< 0.003	NA
P-20A 8/19/2013	Result		7.92		6490		AA	Ą	410	< 0.5	3600	A	AN	AN	5700	Ą		NA		0.059	< 0.003	9.9	< 0.003	380	< 0.005	AN	180	990'0	0.12	< 0.005	88	0.0080	1100	AN	< 0.005	< 0.003	NA
P-19AR 8/19/2013	Result		7.93		6880		196	< 20	730	< 0.5	3800	A	AN	NA	6364	¥		Ā		0.023	< 0.003	3.6	< 0.003	099	< 0.005	A	410	0.63	0.097	< 0.005	99	0.0079	720	A	< 0.005	< 0.003	NA
P-22 8/19/2013	Result		7.62		12,630		NA	AN	1500	< 0.5	0029	A	NA	NA	11,880	NA		NA		< 0.02	< 0.003	13	< 0.003	510	< 0.005	NA	200	0.59	0.082	< 0.005	78	0.013	2400	AN	< 0.005	< 0.003	NA
P-18B 8/19/2013	Result		7.47		11,180		412	< 20	1200	< 0.5	5700	Ā	Ā	Ā	10,560	Ą		AN		0.055	< 0.003	9.5	< 0.003	220	< 0.005	Ą	260	0.84	0.20	< 0.005	65	0.011	2000	N A	< 0.005	< 0.003	NA
P-18A 8/19/2013	Result																A.	a f	pelo	dwe	s 16	ÞΝ															
P-17B 8/19/2013	Result		7.34		65,600		1565	< 20	2000	< 0.5	000'99	NA	NA	NA	90,800	AN		NA		0.12	< 0.015	160	< 0.015	540	< 0.025	A N	4300	1.5	0.28	0.027	280	0.12	24,000	NA	< 0.025	< 0.015	NA
P-17A 8/19/2013	Result		7.4		52,800		NA	NA	5100	< 0.5	31,000	NA	NA	NA	76,800	AN		AN		0.58	600.0 >	82	< 0.009	280	< 0,015	AA	5400	1.0	0.041	0.027	260	0.078	15,000	NA	< 0.015	< 0.009	NA
P-4 8/19/2013	Result		7.7		51,800		NA	NA	6400	1.4	36,000	< 0.05	<2	46	61,700	15		21.1		0.26	< 0.012	200	< 0.012	510	< 0.02	2.9	1700	1.8	1.2	0.050	730	0.074	18,000	6.6	< 0.02	< 0.012	< 0.02
P-2 8/19/2013	Result		7.51		35,900		NA	NA	6400	< 0.5	18,000	< 0.05	<2	121	35,700	15		61.5		0.45	> 0.006	52	< 0.006	200	< 0.01	14	1900	2.8	1.8	0.012	089	0.077	8800	12	< 0.01	> 0.006	< 0.01
KMW-8R 8/19/2013	Result		7.61		24,200		NA	NA	2400	< 0.5	17,000	A	NA	NA	28,580	NA		NA		0.099	> 0.006	71	> 0.006	260	< 0.01	AN	1200	0.82	0.35	< 0.01	140	0.031	7700	NA	< 0.01	> 0.006	NA
P-5R 8/20/2013	Result		7.52		42,600		NA	NA	0099	< 0.5	27,000	< 0.05	<2>	125	48,000	10		45.8		0.41	< 0.009	36	< 0.009	200	< 0.015	30	2000	2.0	0.65	< 0.015	420	0.079	12,000	11	< 0.015	< 0.009	< 0.015
P-6R 8/20/2013	Result		7.51		80,600		AN	AA	2400	< 0.5	81,000	< 0.05	<2	30	93,000	21		34.2		0.12	< 0.018	270	< 0.018	089	< 0.03	82	3000	5.0	1.2	0.058	1200	0.10	33,000	16	< 0.03	< 0.018	< 0.03
P-7R 8/20/2013	Result		7.7		106,600		NA	NA	2100	< 0.5	130,000	< 0.05	<2	610	174,000	28		30.9		0.62	< 0.015	540	< 0.015	1100	< 0.025	30	1500	3.9	< 0.5	0.11	1000	0.041	62,000	15	< 0.025	< 0.015	< 0.025
	Parameter Name	General Chemistry	ph (field)	General Chemistry (µmhos/cm)	Specific Conductance	General Chemistry (mg/L)	Alkalinity - Bicarbonate	Alkalinity - Carbonate	Chloride	Nitrogen, Nitrate (as N)	Sulfate	Sulfide	Sulfite	Suspended Solids (residue, non-filterable)	Total Dissolved Solids (residue, filterable)	Total Organic Carbon	General Chemistry (NTU)	Turbidity	Metals (mg/L)	Arsenic, Dissolved	Beryllium, Dissolved	Boron, Dissolved	Cadmium, Dissolved	Calcium, Dissolved	Chromium, Dissolved	Fluoride, Dissolved	Magnesium, Dissolved	Manganese, Dissolved	Molybdenum, Dissolved	Nickel, Dissolved	Potassium, Dissolved	Selenium, Dissolved	Sodium, Dissolved	Strontium, Dissolved	Titanium, Dissolved	Vanadium, Dissolved	Zinc, Dissolved

Table 1 - Monitoring Well Sampling Results NV Energy - Reid Gardner Station 3rd Quarter 2013 Unit 4 Pond Wells

HOGAN WASH AREA

	KMW-20 8/21/2013	KMW-15 8/21/2013	KMW-1M 8/21/2013	KMW-1D 8/20/2013	KMW-19 8/21/2013	IMW-2SR 8/21/2013	IMW-2D 8/21/2013
Parameter Name	Result	Result	Result	Result	Result	Result	Result
General Chemistry							
ph (field)	7.6	7.76	7.92	8.07		7.46	8.07
General Chemistry (µmhos/cm)							
Specific Conductance	8140	34,400	8440	2000		4300	1914
General Chemistry (mg/L)							
Alkalinity - Bicarbonate	1967	742	308	154		NA	NA
Alkalinity - Carbonate	< 20	< 20	< 20	< 20		NA	AN
Chloride	380	2900	540	45		320	43
Nitrogen, Nitrate (as N)	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5
Sulfate	5200	20,000	5200	1000		2900	1100
Sulfide	< 0.05	< 0.05	< 0.05	< 0.05		AN	< 0.05
Sulfite	<2	<2	<2	<2		AN	<2
Suspended Solids (residue, non-filterable)	11,520	3792	4564	106		NA	< 15
Total Dissolved Solids (residue, filterable)	8000	38,700	8860	1728		4456	1674
Total Organic Carbon	42	4.1	1.6	<1		NA	<1
General Chemistry (NTU)					sto		
Turbidity	7560	1970	720	12.2	оЯ	NA	10.8
Metals (mg/L)					ʻpə _l		
Arsenic, Dissolved	0.026	< 0.1	< 0.02	< 0.02	jdw	< 0.02	< 0.02
Beryllium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	es:	< 0.003	< 0.003
Boron, Dissolved	6.9	62	6.0	0.80	toM	2.6	0.79
Cadmium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003		< 0.003	< 0.003
Calcium, Dissolved	460	470	530	180		470	210
Chromium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005
Fluoride, Dissolved	6.1	5.3	2.9	2.6		AN	2.5
Magnesium, Dissolved	410	1500	670	100		300	100
Manganese, Dissolved	0.72	0.019	2.1	0.074		0.52	0.012
Molybdenum, Dissolved	1.4	16	0.74	0.17		0.19	0.18
Nickel, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005
Potassium, Dissolved	120	620	140	34		47	23
Selenium, Dissolved	0.0068	0.055	0.0088	0.0011		0.0061	0.012
Sodium, Dissolved	1300	10,000	1100	130		310	94
Strontium, Dissolved	11	11	12	6.5		NA	8.4
Titanium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005
Vanadium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003		< 0.003	< 0.003
Zinc, Dissolved	< 0.005	< 0.005	0.0080	< 0.005		NA	< 0.005

Table 1 - Monitoring Well Sampling Results
3rd Quarter 2013
NV Energy - Reid Gardner Station
Unit 4 Pond Wells

UNIT 4B/C Pond Area

	KMW-11	8/21/2013
MW-13	Duplicate	8/22/2013
	MW-13	8/22/2013
	MW-6	8/22/2013
	MW-10RR	8/21/2013
	KMW-2D	8/22/2013
	KMW-2M	8/22/2013
	KMW-2S	8/22/2013

Parameter Name	Result							
General Chemistry								
ph (field)	7,65	7.43	7.58	7.47	7.44	79.7	NA	7.66
General Chemistry (µmhos/cm)								
Specific Conductance	3650	3780	3650	17,170	2800	69,700	67,200	3040
General Chemistry (mg/L)								
Alkalinity - Bicarbonate	NA							
Alkalinity - Carbonate	NA	AN	AN	AN	AN	NA	NA	NA
Chloride	390	380	360	2700	270	2500	2700	230
Nitrogen, Nitrate (as N)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1
Sulfate	1400	1400	1200	7800	860	61,000	57,000	1700
Sulfide	NA	AN	Ą	NA	AN	NA	NA	NA
Sulfite	NA	NA	AN	NA	NA	NA	NA	NA
Suspended Solids (residue, non-filterable)	NA	AN	AN	NA	NA	AN	NA	NA
Total Dissolved Solids (residue, filterable)	2926	2894	2750	16,360	2012	086'96	92,000	2612
Total Organic Carbon	NA	NA	NA	NA	NA	AN	NA	NA
General Chemistry (NTU)								
Turbidity	NA	NA	NA	NA	NA	AN	AN	NA
Metals (mg/L)								
Arsenic, Dissolved	0.15	0.087	0.073	0.024	0.24	< 0.2	< 0.2	0.033
Beryllium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	> 0.006	> 0.006	< 0.003
Boron, Dissolved	1.1	1.1	1.3	7.9	0.91	40	38	1.8
Cadmium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	> 0.006	> 0.006	< 0.003
Calcium, Dissolved	160	150	140	550	91	260	540	300
Chromium, Dissolved	< 0.005	< 0.005	< 0.1	< 0.005	< 0.005	< 0.01	< 0.01	0.081
Fluoride, Dissolved	NA	ΑN	ΑΝ	NA	AN	NA	AN	NA
Magnesium, Dissolved	180	150	150	850	130	2000	1900	120
Manganese, Dissolved	0.22	0.25	0.28	3.4	0.13	4.2	4.1	< 0.005
Molybdenum, Dissolved	0.026	0.025	0.032	0.73	0.022	0.16	0.15	0.14
Nickel, Dissolved	< 0.005	< 0.005	< 0.005	0.0087	< 0.005	0.022	0.021	< 0.005
Potassium, Dissolved	41	36	29	200	34	410	400	21
Selenium, Dissolved	0.0037	0.0036	0.0020	0.034	0.0033	0.048	0.048	0.020
Sodium, Dissolved	520	480	530	3200	330	29,000	28,000	240
Strontium, Dissolved	A A	ΑΝ	ΑN	NA	Ą	AN	AN	NA
Titanium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005
Vanadium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	> 0.006	> 0.006	< 0.003
Zinc, Dissolved	NA	AN	NA	NA	NA	NA	NA	NA

Table 1 - Monitoring Well Sampling Results
3rd Quarter 2013
NV Energy - Reid Gardner Station
Unit 4 Pond Wells

UNIT 4B/C Pond Area

	MW-11S 8/22/2013	MW-11M 8/22/2013	MW-12S 8/22/2013	MW-12M 8/22/2013	MW-14S 8/22/2013	MW-14M 8/22/2013	MW-15 8/22/2013	MW-5 8/22/2013	MW-2R 8/22/2013	MW-3RR 8/22/2013	MW-16S 8/22/2013	MW-16M 8/22/2013
Parameter Name	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
General Chemistry												
ph (field)	7.77	7.58	7.74	7.56	7.7	7.95	7.93	7.36	7.12	7.53	7.69	7.82
General Chemistry (µmhos/cm)												
Specific Conductance	71,200	10,820	39,900	27,400	79,400	33,500	36,700	7250	18,070	28,500	15,810	6560
General Chemistry (mg/L)												
Alkalinity - Bicarbonate	NA	NA	NA	NA	AA	NA	NA	435	775	NA	NA	NA
Alkalinity - Carbonate	NA	AN	NA	NA	AN	AN	AN	< 20	< 20	AN	AN	NA
Chloride	9100	2000	19,000	4000	11,000	2300	2100	1000	3100	4600	2100	880
Nitrogen, Nitrate (as N)	< 0.5	< 0.5	1.4	< 0.5	09.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sulfate	53,000	3600	40,000	15,000	38,000	27,000	24,000	3300	7100	21,000	0069	2700
Sulfide	AN	ΑN	AN	NA	AN	AN	AN	NA	< 0.05	< 0.05	AN	AN
Sulfite	AN	NA	NA	NA	Ą	AN	AN	NA	<2	<2	AN	NA
Suspended Solids (residue, non-filterable)	NA	AN	NA	NA	AN	AN	AN	NA	191	39	Ą	AN
Total Dissolved Solids (residue, filterable)	90,000	9220	118,000	26,640	87,000	35,800	38,000	6472	16,340	32,760	14,660	5876
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	6.2	14	AN	AN
General Chemistry (NTU)												
Turbidity	NA	NA	NA	NA	NA	NA	NA	NA	131	43.0	AN	AN
Metals (mg/L)												
Arsenic, Dissolved	0.45	0.037	< 0.2	< 0.1	0.41	< 0.1	< 0.1	0.17	0.33	< 0.1	0.15	0.043
Beryllium, Dissolved	< 0.015	< 0.003	< 0.015	< 0.003	< 0.015	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Boron, Dissolved	63	2.6	250	8.8	200	18	21	2.1	8.7	29	14	9.9
Cadmium, Dissolved	< 0.015	< 0.003	< 0.015	< 0.003	< 0.015	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Calcium, Dissolved	570	550	620	450	260	440	440	270	340	460	480	1200
Chromium, Dissolved	< 0.025	< 0.005	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fluoride, Dissolved	AN	AN	ΝΑ	NA	Ϋ́	ΑN	AN	NA	7.4	56	AN	AN
Magnesium, Dissolved	2000	450	3900	1100	1700	1200	440	380	280	2600	700	099
Manganese, Dissolved	1.4	0.90	6.1	1.5	5.4	0.89	1.2	0.63	0.22	2.2	0.34	0.12
Molybdenum, Dissolved	0.62	890.0	2.2	0.90	2.9	0.16	0.20	0.022	0.068	1,8	0.72	0.13
Nickel, Dissolved	< 0.5	0.0062	0.72	0.074	0.15	0.058	0.0071	0.055	0.0062	< 0.005	< 0.005	0.026
Potassium, Dissolved	1200	68	1600	200	1200	150	120	56	95	320	170	140
Selenium, Dissolved	090'0	0.018	0.19	0.029	0.10	0.020	0.020	9600.0	0.027	0.046	0.018	0.010
Sodium, Dissolved	30,000	1500	33,000	6100	28,000	0096	11,000	1100	3200	4900	2800	1200
Strontium, Dissolved	Ą	AN	AN	NA A	AN	AN	AN	NA	9.7	11	AN	AN
Titanium, Dissolved	< 0.025	< 0.005	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.005	0.0055
Vanadium, Dissolved	< 0.015	< 0.003	< 0.015	< 0.003	< 0.015	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Zinc, Dissolved	NA	NA	NA	NA	NA	NA	NA	NA	0.0094	< 0.005	NA	NA

Table 1 - Monitoring Well Sampling Results NV Energy - Reid Gardner Station 3rd Quarter 2013 Unit 4 Pond Wells

FORMER POND 4A AREA

8/20/2013 CMW-5D < 0.003 <0.005 NA 540 0.36 0.054 <0.005 12,690 11,050 0.055 < 0.005 Result 582< 201500< 0.55300NANANA 90 0.014 2700 NA 7.47 10 AN A ¥ 8/20/2013 CMW-5S < 0.012 56,200 31,000 66,500 < 0.012 18,000 < 0.012 Result < 0.02 < 0.02 3100 0006 < 0.5 3500 2.0 0.24 510 260 7.73 Z Z Z Y Y ¥ 40 ¥ ¥ 8/20/2013 CMW-7D < 0.005 < 0.003 < 0.003 0.071 < 0.005 < 0.003 Result 0.0011 1200 NA 5770 NA 180 < 0.5 2800 NA NA 4748 NA 180 0.12 7.49 6.0 180 45 A MA CMW-7S 8/20/2013 < 0.003 < 0.003 < 0.005 < 0.005 0.040 Result 0.0067 6100 3100 NA NA NA 5544 930 NA NA 370 < 0.5 270 1.0 7.21 3.9 500 63 A NA CMW-4D 8/21/2013 < 0.005 < 0.003 < 0.003 100 < 0.005 0.026 < 0.005 < 0.003 Result 0.0049 2300 270 NA 7.74 NA 240 < 0.5 < 0.5 880 NA NA 1728 NA 100 22 ¥ A 8/21/2013 CMW-4S < 0.003 < 0.003 < 0.005 0.038 < 0.005 < 0.003 Result NA 110 < 0.005 < 0.02 0.0041 2790 7.75 NA NA 280 < 0.5 NA 54 410 A ž 66 ¥ 8/20/2013 CMW-6D Result < 0.003 3.0 < 0.005 < 0.005 3000 < 0.5 7500 NA NA NA NA 17,540 < 0.003 18,240 0.13 7.34 950 0.79 0.025 3500 200 95 Ä ¥ × A Ϋ́ ¥ 8/20/2013 CMW-6S 19,640 Result NA 2600 < 0.5 8300 NA NA NA NA NA NA NA 0.086 < 0.003 16 < 0.003 < 0.005 < 0.005 NA 750 0.22 0.20 0.0064 300 0.029 4700 7.65 420 ¥ × 8/20/2013 < 0.003 <0.005 4.3 140 0.12 0.011 0.064 670 4.3 < 0.005 < 0.003 < 0.005 37 < 0.005 MW-4 NA NA 290 < 0.5 1000 < 0.05 Result 3760 <2 <15 2640 7.29 7.82 3.7 8/21/2013 < 0.003 MW-8 2.8 < 0.005 NA 210 0.24 0.054 < 0.005 780 NA < 0.005 < 0.003 Result 5040 0.0077 NA NA 560 < 0.5 1800 0.041 7.49 NA NA 4044 240 ž 45 ¥ 8/21/2013 **IMW-2.5D** Result <0.003 1.3 <0.003 120 < 0.005 NA 150 0.24 0.030 < 0.005 34 < 0.005 < 0.005 3420 7.36 NA 340 NA 1100 NA 520 NA Ϋ́ ¥ 3/21/2013 **IMW-2.5S** < 0.003 < 0.003 < 0.005 < 0.005 < 0.005 < 0.005 Result < 0.003 3600 NA 160 0.27 0.031 NA NA 350 < 0.5 NA NA NA 2654 NA 7.35 100 36 550 NA 1.2 Ϋ́ AN Suspended Solids (residue, non-filterable) Fotal Dissolved Solids (residue, filterable) Parameter Name General Chemistry (µmhos/cm) Seneral Chemistry (mg/L) Molybdenum, Dissolved General Chemistry (NTU Alkalinity - Bicarbonate Nitrogen, Nitrate (as N) Magnesium, Dissolved Manganese, Dissolved Alkalinity - Carbonate Specific Conductance Chromium, Dissolved Fotal Organic Carbon Potassium, Dissolved Vanadium, Dissolved Cadmium, Dissolved Strontium, Dissolved Beryllium, Dissolved Selenium, Dissolved Titanium, Dissolved Fluoride, Dissolved Calcium, Dissolved Sodium, Dissolved Seneral Chemistry Arsenic, Dissolved Nickel, Dissolved Boron, Dissolved Zinc, Dissolved Metals (mg/L) urbidity Chloride

Sulfate Sulfide Sulfite Table 1 - Monitoring Well Sampling Results
3rd Quarter 2013
NV Energy - Reid Gardner Station
Unit 4 Pond Wells

FORMER POND 4A AREA

		MW-1B		TOKE	FURINIER POIND 4A AKEA	AKEA						
	MW-1R 8/20/2013	Duplicate 8/20/2013	CMW-3S 8/21/2013	CMW-3D 8/21/2013	CMW-1S 8/21/2013	CMW-1D 8/21/2013	KMW-15 8/21/2013	MW-9 8/21/2013	CMW-2S 8/21/2013	CMW-2D 8/21/2013	IMW-35 8/20/2013	IMW-3D 8/20/2013
Parameter Name	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
General Chemistry												
ph (field)	7.41	NA	8.17	7.49	7.66	7.66	7.59	7.58	7.78	7.46	7.4	7:37
General Chemistry (µmhos/cm)												
Specific Conductance	3900	3950	14,840	6640	4860	4920	28,600	10,810	0066	13,360	2490	2300
General Chemistry (mg/L)												
Alkalinity - Bicarbonate	410	428	AN	AN	AN	NA	NA	AN	AN	AN	AN	NA
Alkalinity - Carbonate	< 20	< 20	Ą	AN	NA	NA	AN	Ą	AN	NA	NA	NA
Chloride	300	310	1100	800	260	480	2300	1300	1300	1600	250	240
Nitrogen, Nitrate (as N)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.71	< 0.5
Sulfate	1700	1700	7500	3200	2300	2300	17,000	2500	4800	6300	710	710
Sulfide	A N	NA	NA	A	NA	NA	< 0.05	< 0.05	NA	NA	NA	NA
Sulfite	NA A	AN	AN	AN	NA	AN A	<2>	< 2	AN	AN	ΑN	N
Suspended Solids (residue, non-filterable)	A A	AN	NA	AN	NA	NA	198	<15	AN	AN	AN	NA
Total Dissolved Solids (residue, filterable)	3388	3452	13,410	5768	4172	4156	30,920	10,710	9330	12,250	1784	1608
Total Organic Carbon	NA	NA	NA	NA	NA	NA	10	1.9	AN	AN	AN	NA
General Chemistry (NTU)												
Turbidity	AN	NA	NA	NA	NA	NA	145	1.19	NA	NA	AN	NA
Metals (mg/L)												
Arsenic, Dissolved	0.43	0.44	0.20	0.032	< 0.02	< 0.02	0.32	0.068	0.31	0.27	0.041	< 0.02
Beryllium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Boron, Dissolved	1.5	1.6	45	2.8	1.9	1.9	27	4.5	5.6	9.5	0.98	0.74
Cadmium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Calcium, Dissolved	460	460	200	340	300	300	490	530	410	380	110	140
Chromium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fluoride, Dissolved	A A	Ϋ́	NA	AN	NA	NA	3.9	3.0	NA	NA	NA	NA
Magnesium, Dissolved	100	100	75	320	220	230	1300	099	410	530	95	87
Manganese, Dissolved	0.11	0.11	0.13	0.56	0.19	0.20	1.3	3.1	0.085	0.19	< 0.005	< 0.005
Molybdenum, Dissolved	0.017	0.018	0.43	0.056	0.049	0.049	0.16	0.024	890.0	620.0	0.026	0.011
Nickel, Dissolved	< 0.005	< 0.005	0.044	< 0.005	< 0.005	< 0.005	0.033	0.030	0.013	0.026	< 0.005	< 0.005
Potassium, Dissolved	4	44	73	49	23	53	210	99	92	69	26	28
Selenium, Dissolved	0.0032	0.0035	0.012	0.012	0.0033	0.0034	0.031	0.018	0.0080	0.0081	0.0086	0.0000
Sodium, Dissolved	440	450	4100	1000	089	099	8200	1800	1700	2700	350	280
Strontium, Dissolved	A A	NA	NA	AN	NA	NA	15	15	NA	NA	NA	NA
Titanium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	09000	< 0.003
Zinc, Dissolved	NA	NA	NA	NA	NA	NA	< 0.005	< 0.005	NA	NA	NA	NA

Table 1 - Monitoring Well Sampling Results 3rd Quarter 2013 NV Energy - Reid Gardner Station Former ASP - 1, 2, 3 Wells

IMW-12.5R

 IMW-9R
 IMW-13R
 IMW-12.5R
 Duplicate
 IMW-17
 IMW-14R

 8/22/2013
 8/22/2013
 8/22/2013
 8/22/2013
 8/22/2013
 8/22/2013
 8/22/2013

Parameter Name	Result	Result	Result	Result	Result	Result
General Chemistry						
ph (field)	7.6	8.34	7.89	NA	8.04	8.36
General Chemistry (mg/L)						
Alkalinity - Bicarbonate	489	274	NA	NA	345	392
Alkalinity - Carbonate	< 20	< 20	NA	NA	< 20	< 20
Chloride	310	74	81	83	140	720
Nitrogen, Nitrate (as N)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	8.7
Phosphorus, Total (as P)	0.30	< 0.1	0.31	0.45	0.66	0.29
Sulfate	880	210	180	160	870	2600
Sulfide	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sulfite	< 2	< 2	< 2	< 2	< 2	< 2
Suspended Solids (residue, non-filterable)	1029	56	762	215	1008	3296
Total Dissolved Solids (residue, filterable)	2118	706	750	722	1764	5484
Total Organic Carbon	<1	<1	<1	< 1	<1	<1
General Chemistry (NTU)						
Turbidity	1030	34.9	186	75.7	981	1560
Metals (mg/L)						
Arsenic, Dissolved	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Barium, Dissolved	0.013	0.027	0.038	0.040	0.016	0.0065
Beryllium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Boron, Dissolved	0.80	0.73	0.52	0.52	3.3	4.2
Cadmium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Calcium, Dissolved	170	38	42	44	51	87
Chromium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fluoride, Dissolved	2.7	2.1	2.3	2.6	3.9	8.6
Magnesium, Dissolved	110	33	42	43	16	56
Manganese, Dissolved	< 0.005	0.022	0.021	0.025	< 0.005	< 0.005
Molybdenum, Dissolved	0.020	0.0075	< 0.005	< 0.005	0.13	0.38
Nickel, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Selenium, Dissolved	0.0094	0.0017	< 0.001	< 0.001	0.010	0.042
Sodium, Dissolved	340	150	150	140	560	1900
Strontium, Dissolved	3.8	2.6	2.0	2.1	2.1	1.9
Titanium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium, Dissolved	0.0050	0.020	0.014	0.010	0.0048	0.0079
Zinc, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

Table 1 - Monitoring Well Sampling Results 3rd Quarter 2013 NV Energy - Reid Gardner Station Former ASP - 1, 2, 3 Wells

IMW-12.5R

 IMW-9R
 IMW-13R
 IMW-12.5R
 Duplicate
 IMW-17
 IMW-14R

 8/22/2013
 8/22/2013
 8/22/2013
 8/22/2013
 8/22/2013
 8/22/2013
 8/22/2013

Parameter Name	Result	Result	Result	Result	Result	Result
VOC (µg/L)						
Acetone	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	< 5	< 5	< 5	< 5	< 5	< 5
Bromobenzene	< 5	< 5	< 5	< 5	< 5	< 5
Bromodichloromethane	< 5	< 5	< 5	< 5	< 5	< 5
Bromoform	< 5	< 5	< 5	< 5	< 5	< 5
Bromomethane	< 5	< 5	< 5	< 5	< 5	< 5
n-Butylbenzene	< 5	< 5	<5	<5	< 5	< 5
sec-Butylbenzene	< 5	< 5	< 5	< 5	<5	< 5
tert-Butylbenzene	< 5	< 5	< 5	< 5	< 5	< 5
Carbon Disulfide	< 5	< 5	< 5	< 5	<5	< 5
Carbon tetrachloride	< 5	< 5	< 5	< 5	< 5	< 5
Chlorobenzene	< 5	< 5	< 5	< 5	< 5	< 5
Chloroethane	< 5	< 5	< 5	< 5	< 5	< 5
Chloroform	< 5	< 5	< 5	< 5	< 5	< 5
Chloromethane	< 5	< 5	< 5	< 5	< 5	< 5
2-Chlorotoluene	< 5	< 5	< 5	< 5	< 5	< 5
4-Chlorotoluene	< 5	< 5	< 5	<5	< 5	< 5
1,2-Dibromo-3-chloropropane	< 5	< 5	< 5	< 5	< 5	< 5
Dibromochloromethane	< 5	<5	<5	<5	< 5	< 5
1,2-Dibromoethane	< 5	< 5	< 5	< 5	< 5	< 5
Dibromomethane	<5	<5	<5	<5	<5	< 5
1,2-Dichlorobenzene	< 5	< 5	< 5	< 5	< 5	< 5
1,3-Dichlorobenzene	< 5	< 5	< 5	< 5	< 5	< 5
1,4-Dichlorobenzene	<5	< 5	< 5	< 5	< 5	< 5
Dichlorodifluoromethane	< 5	< 5	< 5	< 5	< 5	< 5
1,1-Dichloroethane	< 5	< 5	< 5	< 5	< 5	< 5
1,2-Dichloroethane	< 5	< 5	<5	< 5	< 5	< 5
1,1-Dichloroethene	< 5	< 5	< 5	< 5	< 5	< 5
cis-1,2-Dichloroethene	< 5	< 5	< 5	< 5	< 5	< 5
trans-1,2-Dichloroethene	< 5	<5	<5	< 5	<5	< 5
1,2-Dichloropropane	< 5	< 5	<5	< 5	<5	< 5
1,3-Dichloropropane	<5 <5	<5 <5	< 5 < 5	< 5	<5	< 5
2,2-Dichloropropane	<5	<5	<5	<5 <5	<5 <5	<5 <5
1,1-Dichloropropene cis-1,3-Dichloropropene	< 5	<5	<5	< 5	<5	385
	< 5	<5	<5	<5	< 5 < 5	< 5
Ethylbenzene Hexachlorobutadiene	< 5	<5	<5	<5	<5	<5 <5
Isopropylbenzene	<5	<5	<5	< 5	<5	<5
4-Isopropyltoluene	<5	<5	<5	<5	<5	< 5
4-Methyl-2-Pentanone	< 10	<10	<10	< 10	<10	< 10
Methylene chloride	<5	<5	<5	< 5	<5	< 5
Methyl-tert-butyl ether	<5	<5	<5	<5	< 5	<5
Naphthalene (VOC)	<5	<5	<5	< 5	< 5	< 5
n-Propylbenzene	<5	<5	<5	<5	<5	<5
Styrene	< 5	< 5	< 5	<5	< 5	<5
1,1,1,2-Tetrachloroethane	< 5	< 5	< 5	< 5	< 5	< 5
1,1,2,2-Tetrachloroethane	<5	< 5	< 5	< 5	< 5	<5
Tetrachloroethene	< 5	< 5	< 5	< 5	<5	< 5
Toluene	< 5	< 5	< 5	< 5	< 5	< 5
1,2,3-Trichlorobenzene	< 5	<5	<5	< 5	< 5	< 5
1,2,4-Trichlorobenzene	< 5	<5	<5	<5	< 5	<5
1,1,1-Trichloroethane	< 5	<5	<5	<5	<5	< 5
1,1,2-Trichloroethane	<5	< 5	< 5	< 5	< 5	<5
Trichloroethene	< 5	<5	<5	<5	<5	<5
Trichlorofluoromethane	< 5	< 5	< 5	< 5	<5	< 5
1,2,3-Trichloropropane	< 5	<5	<5	<5	<5	< 5
1,2,4-Trimethylbenzene	< 5	<5	<5	<5	<5	<5
1,3,5-Trimethylbenzene	<5	<5	<5	<5	< 5	<5
Vinyl chloride	<2	<2	<2	<2	<2	<2
m,p-Xylene	< 5	<5	<5	<5	<5	<5
o-Xylene	<5	<5	<5	<5	<5	<5
Total Xylenes	<5	<5	<5	<5	<5	<5

Table 1 - Monitoring Well Sampling Results 3rd Quarter 2013 NV Energy - Reid Gardner Station Dissolved Chlorinated Solvents Area

HM-8 HM-50R HM-48 HM-8 Duplicate 8/27/2013 8/27/2013 8/23/2013 8/23/2013

Parameter Name	Result	Result	Result	Result
General Chemistry				
ph (field)			7.8	NA
General Chemistry (mg/L)				
Chloride			250	240
Nitrogen, Nitrate (as N)			< 0.5	< 0.5
Phosphorus, Total (as P)			0.93	0.64
Sulfate			900	900
Total Dissolved Solids (residue, filterable)			2406	2438
Metals (mg/L)	t t	ಕ		
Arsenic, Dissolved	Not Sampled, Free Product	Not Sampled, Free Product	0.036	0.044
Barium, Dissolved	8	4	0.028	0.027
Beryllium, Dissolved	9	, a	< 0.003	< 0.003
Boron, Dissolved	, n	, P,	3.6	3.6
Cadmium, Dissolved	gle e	e e	< 0.003	< 0.003
Calcium, Dissolved	E E	E	65	64
Chromium, Dissolved	ot S	ot S	< 0.005	< 0.005
Magnesium, Dissolved	ž	ž	51	50
Manganese, Dissolved			0.066	0.063
Molybdenum, Dissolved			0.037	0.035
Nickel, Dissolved			0.0057	0.0051
Selenium, Dissolved			0.0017	0.0016
Sodium, Dissolved			770	770
Titanium, Dissolved			< 0.005	< 0.005
Vanadium, Dissolved			< 0.003	< 0.003

Table 1 - Monitoring Well Sampling Results 3rd Quarter 2013 NV Energy - Reid Gardner Station Dissolved Chlorinated Solvents Area

HM-8 HM-50R HM-48 HM-8 Duplicate 8/27/2013 8/27/2013 8/23/2013 8/23/2013

Parameter Name	Result	Result	Result	Result
VOC (µg/L)				
Acetone			< 10	< 10
Benzene			< 5	< 5
Bromobenzene			< 5	< 5
Bromodichloromethane			< 5	< 5
Bromoform			< 5	< 5
Bromomethane			< 5	< 5
n-Butylbenzene			< 5	< 5
sec-Butylbenzene			< 5	< 5
tert-Butylbenzene			< 5	< 5
Carbon Disulfide			< 5	< 5
Carbon tetrachloride			< 5	< 5
Chlorobenzene	2 45		< 5	< 5
Chloroethane			< 5	< 5
Chloroform			< 5	< 5
Chloromethane			<5	< 5
2-Chlorotoluene			< 5	< 5
4-Chlorotoluene			< 5	< 5
1,2-Dibromo-3-chloropropane			< 5	< 5
Dibromochloromethane			< 5	< 5
1,2-Dibromoethane			<5	< 5
Dibromomethane			<5	< 5
1,2-Dichlorobenzene			<5	< 5
1,3-Dichlorobenzene			<5	<5
1.4-Dichlorobenzene	10000		<5	< 5
Dichlorodifluoromethane	100000		<5	<5
1,1-Dichloroethane			<5	< 5
1,2-Dichloroethane	1000000		<5	<5
A CONTRACTOR OF THE CONTRACTOR			December 1	120,50
1,1-Dichloroethene	Di Di)	<5	< 5
cis-1,2-Dichloroethene	70	õ	< 5	< 5
trans-1,2-Dichloroethene	e e	9	< 5	< 5
1,2-Dichloropropane	Vot Sampled, Free Product	Not Sampled, Free Product	< 5	< 5
1,3-Dichloropropane	g,	g,	< 5	< 5
2,2-Dichloropropane	ld ld	de la	< 5	< 5
1,1-Dichloropropene	San	San	< 5	< 5
cis-1,3-Dichloropropene	to	5	< 5	< 5
Ethylbenzene	2	Z	< 5	< 5
Ethylene	180		< 0.013	< 0.013
Hexachlorobutadiene	The state of the s		< 5	< 5
Isopropylbenzene			< 5	< 5
4-Isopropyltoluene			< 5	< 5
4-Methyl-2-Pentanone			< 10	< 10
Methylene chloride			< 5	< 5
Methyl-tert-butyl ether			< 5	< 5
Naphthalene (VOC)			< 5	< 5
n-Propylbenzene			< 5	< 5
Styrene	E Million		< 5	< 5
1,1,1,2-Tetrachloroethane	9.6		< 5	< 5
1,1,2,2-Tetrachloroethane			< 5	< 5
Tetrachloroethene			<5	< 5
Toluene			< 5	< 5
1,2,3-Trichlorobenzene			< 5	< 5
L,2,4-Trichlorobenzene			< 5	< 5
L,1,1-Trichloroethane			<5	< 5
I,1,2-Trichloroethane	W. Hills		<5	< 5
richloroethene			< 5	< 5
Trichlorofluoromethane			< 5	< 5
I,2,3-Trichloropropane			< 5	< 5
L,2,4-Trimethylbenzene			< 5	< 5
,3,5-Trimethylbenzene			<5	< 5
/inyl chloride			<2	< 2
The State of the S	85118		and the contract of the contract of	
n,p-Xylene	25.0V=3		<5	< 5
-Xylene	30 S		< 5	< 5
otal Xylenes			< 5	< 5

Table 1 - Monitoring Well Sampling Results
3rd Quarter 2013
NV Energy - Reid Gardner Station
WMU-12 Area

	HM-60 8/23/2013	HM-33 8/23/2013	HM-32R 8/23/2013	HM-31R 8/23/2013	HM-20 8/27/2013	HM-28 8/23/2013	HM-24 8/23/2013	HM-24 Duplicate 8/23/2013	HM-19 8/23/2013	Dewatering Well Effluent 8/23/2013	HM-53 8/23/2013	HM-52R 8/23/2013	HM-54 8/23/2013
Parameter Name	Result	Result	Result	Result	Result	Result	Result	Result	Result	Recult	Recult	Recuit	Recult
General Chemistry													
ph (field)	7.64	7.57	7.67	8.09		7.55	8.36	AN	8.08	7.9	7.3.1	77	7.6
General Chemistry (mg/L)										2	70.		21,
Alkalinity - Bicarbonate	299	NA	325	NA NA		AN	AN	AN	NA	373	510	AN	AN
Alkalinity - Carbonate	< 20	NA	< 20	Ą		Ą	A N	AN	AN	< 20	< 20	AN	AN
Chloride	220	260	370	310		300	330	330	250	300	400	280	880
Nitrogen, Nitrate (as N)	< 0.5	0.64	0.54	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	0.64	< 0.5	< 0.5	< 0.5
Phosphorus, Total (as P)	< 0.1	2.4	< 0.1	0.95		0.58	1.6	1.3	< 0.1	< 0.1	0.36	< 0.1	0.26
Sulfate	1200	1200	3900	370		1400	1400	1400	1100	1000	2500	1200	3700
Sulfide	NA	AN	AN	NA		< 0.05	NA	NA	NA	< 0.05	< 0.05	< 0.05	< 0.05
Sulfite	NA	NA	A	NA		<2	NA	AN	NA	<2	<2	<2	<2
Suspended Solids (residue, non-filterable)	AM	NA	¥	NA		1110	AN	AN	Ā	<15	56	<15	397
Total Dissolved Solids (residue, filterable)	2320	2470	6272	2836		5997	3248	3296	2426	2286	4204	2540	0069
Total Organic Carbon	NA	NA	¥	NA	to	<1	NA	AN	AN	1	1.9	<1	3.6
General Chemistry (NTU)					npa								
Turbidity	NA	NA	NA	NA	Pro	1420	NA	AN	NA	3.7	61.2	1.04	302
Metals (mg/L)					ee								
Arsenic, Dissolved	0.024	< 0.02	0.17	< 0.02	Э 'P	0.034	< 0.02	< 0.02	0.075	0.026	0.64	0.062	9.000
Barium, Dissolved	0.021	0.015	0.0093	0.22	əjd	0.010	0.020	0.020	0.012	0.015	0.016	0.0089	0.010
Beryllium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	lwe	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Boron, Dissolved	2.4	2.1	2.9	3.5	\$ 10	5.6	5.4	5.4	3.0	1.4	2.8	3.2	15
Cadmium, Dissolved	< 0.003	< 0.003	< 0.003	< 0.003	N	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Calcium, Dissolved	100	160	170	35		130	25	25	61	140	180	78	200
Chromium, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fluoride, Dissolved	AN	NA	AN	NA		3.7	NA	NA	NA	3.9	7.0	4.2	< 0.5
Magnesium, Dissolved	64	94	100	55		95	63	63	99	110	220	78	270
Manganese, Dissolved	0.054	< 0.005	0:030	0.0057		0.018	0.016	0.016	0.24	< 0.005	0.11	< 0.005	0.25
Molybdenum, Dissolved	0.042	0.022	0.057	< 0.005		0.041	< 0.005	< 0.005	0.021	0.037	0.083	0:030	0.10
Nickel, Dissolved	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	9600.0	< 0.005	0.011	< 0.005	< 0.005
Selenium, Dissolved	0.015	0.018	0.012	0.0020		0.0085	0.0020	0.0025	0.0018	0.0092	0.0054	0.0074	0.0072
Sodium, Dissolved	280	470	1800	1100		099	1100	1100	069	460	1000	069	1700
Strontium, Dissolved	NA	VA V	NA	AN		3.5	AN	AN	AN	3.6	7.7	2.5	7.8
Titanium, Dissolved	< 0.005	< 0.005	< 0.005	0.017		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium, Dissolved	0.016	0.013	0.026	0.024		0.011	< 0.003	< 0.003	0.0034	0.0093	< 0.003	0.011	0.0058
Zinc, Dissolved	NA	AA	NA	NA		< 0.005	NA	NA	NA	< 0.005	0.0099	< 0.005	< 0.005

TABLE 1A - QUARTERLY MONITORING WELL PRODUCT LEVELS

		I		R STATION (DIESE OUNDWATER ELEV			
te Collected:	8/27/2013		GR	OUNDWATERELEV	Collected By:		
Well (New I.D.)	New TOC Elev	Depth to top of Diesel	Depth to top of Water	New Groundwater Elevation*	Product Thickness	Top of Product Elevation	Sample Comments
HM-I	1596.47		18.35	1578.12	0		Gauged 8/27/2013
НМ-2	1595.93		18.23	1577.70	0		Gauged 8/27/2013
HM-4	1596.88		19.22	1577.66	0		Gauged 8/27/2013
HM-5a	1593.68		-		-		Not gauged (pump in well)
HM-6	1590.48		<u> </u>		-		WELL DESTROYED
HM-7	1598.57	22.76	22.96	1575.78	0.20	1575.81	Gauged 8/27/2013
HM-8	1594.56		16.82	1577.74	0		Sampled 8/23/2013
HM-12	1589.95		-	-	-		Not gauged (pump in well)
HM-15	1588.72		20.99	1567.73	0		Gauged 8/27/2013
HM-16	1591.59		-	-	-		WELL DESTROYED
HM-17	1588.24		19.36	1568.88	00		Gauged 8/27/2013
HM-18	1586.66		23.98	1562.68	0		Gauged 8/27/2013
HM-19	1584.67		22.11	1562.56	0		Sampled 8/23/2013
HM-20	1588.67	24.30	24.32	1564.37	0.02	1564.37	Gauged 8/27/2013
HM-21	1587.04			-			Gauged Dry 8/27/2013
HM-22	1591.01			-	-		Gauged Dry 8/27/2013
HM-23	1588.52		24.94	1563.58	0		Gauged 8/27/2013
HM-24	1586.21		23.22	1562.99	0		Sampled 8/23/2013
HM-27			-	-	-		WELL DESTROYED
HM-28	1592.71		29.58	1563.13	0		Sampled 8/23/2013
HM-29	1582.15		19.86	1562.29	0		Gauged 8/27/2013
HM-30	1591.28		15.16	1576.12	0		Gauged 8/27/2013
HM-31R	1590.37		17.24	1573.13	0		Sampled 8/23/2013
HM-32R	1586.38		10.70	1575.68	0		Sampled 8/23/2013
HM-33	1591.33		14.84	1576.49	0		Sampled 8/23/2013
HM-34	1582.57		20.30	1562.27	. 0		Gauged 8/27/2013
HM-36	1581.02		18.91	1562.11	0		Gauged 8/27/2013
HM-38	1596.1	20.00	25.05	1575.24	5.05	1576.10	Gauged 8/27/2013
HM-39	1597.64	21.72	23.82	1575.56	2.10	1575.92	Gauged 8/27/2013
HM-40	1597.9		20.36	1577.54	0		Gauged 8/27/2013
HM-41	1592.6		15.40	1577.20	0		Gauged 8/27/2013
HM-42	1595.11	17.41	18.11	1577.58	0.70	1577.70	Gauged 8/27/2013
HM-43	1595.64			Service Services	-		Not gauged
HM-44	1595.65	18.11	18.76	1577.43	0.65	1577.54	Gauged 8/27/2013
HM-45	1594.4	17.52	20.21	1576.42	2.69	1576.88	Gauged 8/27/2013
HM-46	1591.53		-	-	•	-	Not gauged (too many hoses)
HM-47	1595.06	18.15	19.16	1576.74	1.01	1576.91	Gauged 8/27/2013
HM-48	1588.89	10.90	12.15	1577.78	1.25	1577.99	Gauged 8/27/2013
HM-50R	1588.63	10.70	12.12	1577.69	1.42	1577.93	Gauged 8/27/2013
HM-51	1588.21		=	-	-		WELL DESTROYED
HM-52R	1581.35		21.00	1560.35	0		Sampled 8/23/2013
HM-53	1581.74		17.96	1563.78	0		Sampled 8/23/2013
HM-54	1580.66		20.14	1560.52	0		Sampled 8/23/2013
HM-55	1502.44		-		0		Not gauged
HM-56	1502.58		10.07	1577 57	0		Not gauged
HM-60	1588.54	17.12	10.97	1577.57	0	1575.00	Sampled 8/23/2013 Gauged 8/27/2013
HR-1 HR-2	1593.12 1592.2	17.13 19.20	18.56 19.25	1575.75 1572.99	0.05	1575.99	Gauged 8/27/2013
HR-4	1592.2	19.20	19.25	1572.99	-	1573.00	Gauged 8/27/2013
T1-PA	1592.39						Not gauged (too many hoses)
TI-PA	1592.39		•		-		Not gauged (well dry)
STORIGOGO STATE	THE STREET WHEN DEED			-			Not gauged (too many hoses)
T2-S T3-S	1590.17 1589.01		-				Not gauged (too many hoses)
T4-S	1589.01						Not gauged (manhole cover)
	1588.73		-		•		Not gauged (manhole cover, buried)
T5-S	1307.02	with floating pro-	•	•			Not gauged (well dry)

Table 3 - Surface Sampling Location Sampling Results 3rd Quarter 2013 NV Energy - Reid Gardner Station

	SGSPR	8/23/2013
MR-4	Duplicate	8/23/2013
	MR-4	8/23/2013
	MR-3	8/23/2013
	MR-2	8/23/2013
	MR-1	8/23/2013
	MR-UP	8/23/2013

Parameter Name	Result	Result	Result	Result	Result	Result	Result
General Chemistry							
ph (field)	8.37	8.45	8.51	8.51	8.43	AN A	7.58
General Chemistry (mg/L)							
Hardness as CaCO3	270	250	280	280	280	280	2400
Nitrate + Nitrite (as N)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Nitrogen	< 0.1	< 0,1	< 0.1	< 0.1	< 0.1	0.25	10
Phosphorus, Total (as P)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	3.2
Sulfate	190	190	190	200	210	210	1700
Total Dissolved Solids (residue, filterable)	466	603	604	580	616	609	3676
Total Kjeldahl Nitrogen	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.25	10
Metals (mg/L)							
Antimony, Total	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
Arsenic, Total	0.021	< 0.02	0.023	< 0.02	< 0.02	0.020	0.51
Barium, Total	0.041	0.040	0.044	0.043	0.043	0.043	1.3
Beryllium, Total	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.0033
Boron, Total	0.32	0.29	0.33	0.32	0.34	0.35	3.2
Cadmium, Total	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.0079
Calcium, Total	61	99	63	62	62	63	290
Chromium, Total	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.19
Copper, Total	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.19
Fluoride, Total	2.0	2.5	2.5	2.0	1.9	1.9	4.9
Iron, Total	< 0.1	< 0.1	0.18	0.18	0.18	0.16	49
Lead, Total	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	0.067
Magnesium, Total	29	26	30	29	30	30	230
Manganese, Total	< 0.005	< 0.005	< 0.005	0.0062	0.0073	0.0075	3.7
Mercury, Total	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0016
Molybdenum, Total	0.0076	0.0074	0.0080	0.0073	0.0078	0.0077	0.16
Nickel, Total	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.070
Selenium, Total	0.0014	0.0011	0.0016	0.0012	< 0.01	< 0.01	0.043
Silver, Total	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Thallium, Total	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Zinc, Total	< 0.005	0.0080	< 0.005	< 0.005	0.0060	< 0.005	0.35

Well	Ground Elev	TOC Elev	Well Depth	Well Depth	Screened	i Interval ¹	Water	Note	Groundwater
ID			(at Construction)1	(4th Qtr - 2012) ²	Тор	Bottom	Level		Elevation
				ground Wells					
BG-1D	1609.88	1612.95	105	105.93	85	100		NS	
BG-1M	1610.14	1613.24	72	73.17	52	67	S-da-da-eXin	NS	
BG-1S	1610.39 1614.15	1613.13	43	44.15	18 78	38		NS	
BG-2D BG-2M	1613.99	1617.65 1617.59	98 65	100.10 67.70	40	93 60		NS NS	***
BG-2S	1613.73	1617.23	40	42.20	15	35		NS	
BG-3D	1621.22	1623.91	150	151.95	130	145		NS	
BG-3M	1621.30	1623.60	117	116.20	97	112		NS	
BG-3S	1621.07	1623.60	80	82.05	60	75	D 3365 8	NS	
BG-4D	1659.55 1659.52	1662.52	172 135	174.10	152	167 130		NS	700
BG-4M BG-4S	1659.94	1662.43 1662.43	102	135.80 104.72	115 72	97		NS NS	
BG-6D	1616.25	1619.37	135	132.90	115	130		NS	-
BG-6M	1616.26	1619.20	104	106.00	84	99		NS	
BG-6S	1616.27	1618.85	72	74.50	47	67		NS	
11010	1 4000 051	4700.05		esa Wells	100	400	100.00		1500.00
LMW-2 LMW-3	1699.25 1682.39	1702.25 1685.02	120 115	117.45	100 73	120 103	109.99	_	1592.26 1590.99
LMW-4R	1731.39	1733.90	165	98.10 166.10	125	165	94.03	 	1595.22
LMW-5R	1728.94	1731.95	183	185.95	133	173	136.61		1595.34
LMW-6R	1734.83	1737.51	165	169.40	130	160	138.62		1598.89
LMW-7	1738.55	1741.07	178	162.10	108	178	139.58		1601.49
LMW-8R	1688.01	1690.29	128	129.80	88	118	99.8		1590.49
LMW-9	1729.98 1747.03	1733.47 1750.63	153 154	156.90	128 129	148 149	126.59	-	1606.88
LMW-10 KMW-12	1747.03	1750.63	165	145.85 163.60	145	165	140.58 152.01	-	1610.05 1589.63
KMW-16	1736.76	1740.47	145	142.35	125	145	140.04		1600.43
			Mesa	Pond Wells					
LMW-11	1739.67	1741.89	180	162.00	123	153		NS	
LMW-11R	1739.79	1742.94	180	182.97	140	175	152.81		1590.13
LMW-12R	1724.61	1727.54 1670.71	201	201.00	156	196	163.17		1564.37
LMW-13R LMW-14	1667.68 1691.60	1694.49	145 160	148.40	95 120	140 150	107.48	NS	1563.23
LMW-14R	1691.69	1694.98	176	179.10	131	171	138.78	INS	1556.20
LMW-15	1688.29	1691.37	163	166.60	123	158	135.11		1556.26
LMW-16	1696.82	1700.01	169	172.70	124	164	126.29		1573.72
				Pond Wells					
IMW-2D	1612.64	1613.77	102	101.50	75	85	21.34		1592.43
IMW-2SR KMW-1D	1612.54 1612.62	1615.91 1615.83	44 75	43.90 78.80	19 65	39 75	25.15 22.18		1590.76 1593.65
KMW-1M	1612.18	1615.90	50	47.00	40	50	25.07		1590.83
KMW-1S	1612.32	1615.70	25	29.00	10	25	24.97		1590.73
KMW-19	1612.69	1616.23	25	28.00	10	25	25.75		1590.48
KMW-20	1614.76	1618.42	35	34.00	12	32	27.50		1590.92
KMW-11	1605.04	1606.11	47 74	47.80	37	47 74	15.50		1590.61
KMW-2D KMW-2M	1598.25 1598.25	1601.94 1601.89	50	77.80 52.50	64 40	50	13.96 14.07		1587.98 1587.82
KMW-2S	1598.28	1601.76	25	26.40	5	25	14.04		1587.72
MW-2R	1595.81	1597.83	20	22.90	5	20	12.30		1585.53
MW-3RR	1598.24	1600.26	28	30.20	8	23	14.48		1585.78
MW-5	1603.35	1606.22	30	32.30	20	30	19.35		1586.87
MW-6 MW-10RR	1602.51 1597.21	1605.75 1598.69	25 26	28.00	20 6	25 16	18.31		1587.44
MW-11M	1607.57	1607.52	50	27.00	38	48	10.55 20.14		1588.14 1587.38
MW-11S	1607.67	1607.17	25		10	25	18.17		1589.00
MW-12M	1609.93	1609.46	50		37	47	21.93		1587.53
MW-12S	1609.86	1609.74	30		15	30	21.44		1588.30
MW-13	1598.81	1601.42	25		10	25	11.71		1589.71
MW-14M MW-14S	1609.68 1609.63	1609.39 1609.48	51 35		40 15	50 35	22.32		1587.07 1587.40
MW-145	1599.65	1599.18	25		8	23	11.16		1587.40
MW-16M	1594.47	1596.72	40		30	40	11.71		1585.01
MW-16S	1594.34	1596.95	25	200	8	20	11.88		1585.07
CMW-1D	1587.69	1589.60	35	35.60	25	35	7.42		1582.18
CMW-1S	1587.69 1587.49	1589.40	35 35	11.80	5 25	10 35	7.85		1581.55
CMW-2D CMW-2S	1587.49	1589.34 1589.17	35	34.50 11.80	5	10	8.65 8.3		1580.69 1580.87
CMW-3D	1598.46	1600.49	46	47.90	35	45	17.81		1582.68
CMW-3S	1598.46	1600.37	46	25.50	17	22	17.95		1582.42
CMW-4D	1593.26	1595.33	30	29.50	20	30	11.71		1583.62
CMW-4S	1593.26	1595.31	30	17.90	10	15	12.17		1583.14
CMW-5D	1599.26	1601.39	46	42.70	35	45	17.69		1583.70
CMW-5S CMW-6D	1599.26 1599.40	1601.27 1601.61	46 45	22.00 47.20	15 35	20 45	17.81 16.86		1583.46 1584.75
CMW-6S	1599.40	1601.73	45	21.20	15	20	16.85		1584.75
CMW-7D	1592.30	1594.44	35	32.70	25	35	8.31		1586.13
CMW-7S	1592.30	1594.31	35	17.60	10	15	7.06		1587.25
KMW-15	1595.87	1598.74	27	26.90	10	25	16.83		1581.91
MW-1R	1595.08	1597.00	20	23.60	5	20	11.44		1585.56
MW-4	1602.49	1605.59	30 30	32.90	20	30	19.65		1585.94
MW-8 MW-9	1611.93 1603.62	1605.72 1606.84	30	32.90 37.80	20 25	30 35	21.38 25.44		1584.34 1581.40
MW-2.5D	1595.11	1595.84	70	56.90	40	50	11.13		1581.40
MW-2.5S	1595.18	1595.32	20	18.50	10	20	10.77		1584.55
MW-3D	1597.11	1598.02	100		90	100	16.85		1581.17
MW-3S	1597.14	1598.34	25	24.06	15	25	17.36		1580.98

Table 4 - Groundwater Elevation 3rd Quarter 2013 NV Energy - Reid Gardner Station

Well	Ground Elev	TOC Elev	Well Depth	Well Depth	Screened	Interval ¹	Water	Note	Groundwater
ID	-2000		(at Construction) ¹	(4th Qtr - 2012)2	Тор	Bottom	Level		Elevation
			Unit 1,2	2,3 Pond Wells					2009
P-2	1588.89	1591.58	17	18.60	7	17	14.41		1577.17
P-4	1588.67	1591.12	20.4	20.60	8	18	14.75		1576.37
P-5R	1595.74	1597.69	35	35.00	10	35	20.66		1577.03
P-6R	1595.27	1597.14	33	35.20	8	33	20.15		1576.99
P-7R	1595.66	1597.45	33	35.20	8	33	19.09		1578.36
P-8R	1599.47	1601.46	33	34.70	8	33	19.95		1581.51
P-9R	1597.06	1598.86	33	34.80	8	33	14.25		1584.61
KMW-9	1595.90	1599.09	60	63.50	50	60	15.8		1583.29
P-10	1595.34	1600.15	14	19.10	4	14	14.10		1586.05
P-11	1634.51	1638.00	65	68.00	20	65	48.48		1589.52
P-12	1620.05	1623.70	82	83.50	67	82	37.55		1586.15
P-13R	1609.99	1612.29	35	36.40	15	35	25.5		1586.79
P-14R	1604.56	1606.71	35	37.50	10	35	21.2		1585.51
P-15AR	1595.36	1597.22	25	28.20	5	25	14.19		1583.03
P-17A	1583.86	1587.02	12.8	13.30	5	10	10.72		1576.30
P-17B	1583.50	1586.14	13	12.90	5	10	9.44		1576.70
P-18A	1581.70	1583.83	13.2	13.20	2		Dry	**	NA NA
P-18B	1580.69	1583.94	13.4	13.15	. 5	10	10.92		1573.02
P-19AR	1578.48	1580.77	28	28.70	8	23	8.58		1572.19
P-20A	1578.02	1580.71	24	27.50	15	25	6.60		1574.11
P-20B	1577.24	1580.70	20.5	30.60	17	27	6.72		1573.98
KMW-8R	1596.18	1598.86	73	77.30	60	70	22.62		1576.24
P-21	1587.20	1590.73	49	54.80	34	49	5.6		1585.13
P-22	1577.55	1579.87	33	31.50	18	33	4.3		1575.57
IMW-16S	1570.74	1571.12	22	17.00	10	20		NA	
				ASP-1,2,3 Area	79				
IMW-9R	1596.49	1599.29	22	25.00	12	22	19.45		1579.84
IMW-12.5R	1620.28	1623.06	35	35.80	15	35	18.52		1604.54
IMW-13R	1617.31	1620.14	35	34.70	15	35	16.35		1603.79
IMW-14R	1602.86	1605.50	30	32.90	10	30	13.36		1592.14
IMW-17	1598.23	1600.25	30	30.60	8	28	17.62		1582.63
				rinated Solvents Are	ea	MH 1045 - FAIT			
HM-8	1591.01	1594.56	20	25.40	10	20	16.82		1577.74
HM-48	1589.17	1589.01	29	28.15	4	29	12.15	FP	1577.78
HM-50R	1589.18	1588.63	20	-	- 8	28	12.12	FP	1577.69
			Waste Manag	gement Unit 12 Area					
HM-19	1582.11	1584.67		28.80			22.11		1562.56
HM-20	1586.14	1588.67	25	28.36	5	25	24.32	FP	1564.37
HM-24	1583.89	1586.21	25	28.10	5	25	23.22		1562.99
HM-28	1589.59	1592.71	35	41.90	15	35	29.58		1563.13
HM-31R	1588.67	1590.37	25	27.25	5	25	17.24		1573.13
HM-32R	1585.14	1586.38	30	29.10	8	28	10.7		1575.68
HM-33	1588.15	1591.33	25	26.60	5	25	14.84		1576.49
HM-52R	1579.25	1581.35	32	33.50	18	28	21		1560.35
HM-53	1579.11	1581.74	30	33.20	10	30	17.96		1563.78
HM-54	1578.08	1580.66	33	35.10	13	33	20.14		1560.52
HM-60		1588.54	30		5	25	10.97		1577.57

^{*} Purged Dry, no sample obtained, water level obtained

Measured from ground elevation ²Measured from top of casing

^{*} Purged Dry, no sample obtained, water level obtained

** Well Dry, No water level or sample obtained

#Well Damaged

% Well Abandoned or Destroyed

NS Well not gauged or sampled

NE No well casing elevation data available

NA No well access

WD Well Damaged no top of casing elevation

FP Free Product, GW Elevation not adjusted for specific gravity of free product

See Table 1A for Diesel Recovery Area groundwater elevations

NV Energy-Reid Gardner Station Table 5 - Well Maintenace 3rd Quarter 2013

Action taken on well in 2013 Action to be taken 2014

Action to be taken after 2014 Continue observing

New well observation added 3rd qtr 2013

Abandon (Pond 4A solids removal workplan). Replace with Continue to observe. Possible inaccurate reporting. Abandon. Replace with deeper 4", smaller screen slot size, one well in center of the pond footprint following solids Abandon (Pond 4A solids removal workplan). Abandon (Pond 4A solids removal workplan) Abandon (Pond 4A solids removal workplan). Abandon (Pond 4A solids removal workplan). Abandon (Pond 4A solids removal workplan). (bandon (Pond 4A solids removal workplan) bandon (Pond 4A solids removal workplan) Abandon (Pond 4A solids removal workplan) Abandon (Pond 4A solids removal workplan). Abandon (Pond 4A solids removal workplan). Abandon (Pond 4A solids removal workplan) Abandon (Pond 4A solids removal workplan) idation October 2013 Abandon (Pond 4A solids and finer filter pack ¥ A Cloudy, Parameter concentrations Cloudy. Parameter concentrations sampled; lowered pump to 80' to prevent drying up Casing not Field Observations 3rd qtr 2013 Silty Parameter concentraitons Silty. Parameter concentraitons Silty. Parameter concentraitons Silty. Parameter concentraitons remained the same after remained the same after emained the same after remained the same after remained the same after remained the same after remained the same after emained the same. emained the same. redeveloping. edeveloping. edeveloping lamaged. Sloudy AN Field Observations 1st qtr 2013/Status Repaired 1st qtr 2013. Resurveyed April 2, 2013 Repaired 1st qtr 2013. Resurveyed Repaired 1st qtr 2013. Resurveyed Abandoned March 3, 2013 Abandoned March 3, 2013 Hand bailed dry, silty, roots Abandoned March 3, 2013 Redeveloped 1st qtr 2013 Redeveloped 1st qtr 2013 Redeveloped 1st qtr 2013 Redeveloped 1st qtr 2013 tedeveloped 1st qtr 2013 Redeveloped 1st qtr 2013 Redeveloped 1st qtr 2013 Redeveloped 1st qtr 2013 Redeveloped 1st qtr 2013 edeveloped 1st qtr 2013 Not accessible April 2, 2013 April 2, 2013 Slightly Silty April 2013 Repair casing and resurvey Abandon and replace, BLM access Recommendation January 2013 Due nothing Eventually cease sampling as proposed in GSP Due nothing. Eventually cease sampling as proposed in GSP Due nothing. Eventually cease Due nothing Eventually cease ampling as proposed in GSP ampling as proposed in GSP tepair casing and resurvey Repair casing and resurvey tepair casing and resurvey lug and abandon clean srush clean Redevelop dolevelop edevelop edevelop edevelop edevelop edevelop Redevelop edevelop required. Field Observations 3rd qtr 2012 Damaged casing* maged casing Well nearly dry roken casing Clear Silty Silty Silty Silty Silty Silty Silty Well Construction Date 10/31/1989 12/9/2003 5/4/1988 4/16/1993 4/15/1993 /12/2005 10/7/2004 10/7/2004 10/7/2004 10/5/2004 10/7/2004 9/28/2004 9/28/2004 10/5/2004 9/30/2004 9/30/2004 10/1/2004 10/1/2004 10/8/2004 10/8/2004 3/17/1998 5/2/1986 SWW-25 CMW-3S CMW-3D CMW-6S CMW-7D CMW-1D CMW-2D CMW-6D CMW-15 CMW-4S CMW-4D CMW-5S CMW-5D MW-3D KMW-1S Well ID MW4 MW-9 1,2,3 Pond Wells 1,2,3 Pond Wells Unit 1,2,3 Pond Wells Unit 4 Pond Wells Unit 4 Pond Wells **Unit 4 Pond Wells** Unit 4 Pond Wells Init 4 Pond Wells **Juit 4 Pond Wells** Jnit 4 Pond Wells Jnit 4 Pond Wells **Juit 4 Pond Wells** Jnit 4 Pond Wells **Jnit 4 Pond Wells** Unit 4 Pond Wells Jnit 4 Pond Wells Jnit 4 Pond Wells Juit 4 Pond Wells **Jnit 4 Pond Wells** Init 4 Pond Wells Unit 4 Pond Wells Area Location

Hand bailed dry, roots

Table 5 - Well Maintenace 3rd Quarter 2013 NV Energy- Reid Gardner Station

	Action to be taken 2014	2014		Continue observing			New Well observation added 5rd qrr 2013
Area Location	Well ID	Well Construction Date	Field Observations 3rd qtr 2012	Recommendation January 2013	Field Observations 1st qtr 2013/Status April 2013	Field Observations 3rd atr 2013	Recommendation October 2013
Unit 1,2,3 Pond Wells	P-18A	1986	Dry (Wood debris)	Brush clean	Dry	Drv. Not sampled	Abandon and replace with 4" well deeper than previous well (Muddy River Worknian)
Unit 1,2,3 Pond Wells	P-18B	1986	Recharge slowly	Do nothing. Possibly use as aquifer test observation well.	Recharge slowly Hand bailed dry	sampled: vellow hue, drv @ 1.5 gals well Muddy River Workplan)	Abandon and replace with 4" well deeper than previous well Muddy River Workilan)
Unit 1,2,3 Pond Wells	KMW-9	3/18/1998	Exhibiting similar qualitiy as shallow wells. Possible cracked casing. Aquifer test conducted.	Foaluate aquifer test results. Possible replacement.	Exhibits similar water quality as shallow Exhibits similar water quality as wells. Aquifer test inconclusive shallow wells.	Exhibits similar water quality as shallow wells	Gease sampling and use as water level only. Abandon and replace with 4" well as part as Area South of Pond D/E Worklain
Unit 1,2,3 Pond Wells	P-17A	1986	Recharge slowly	Abandon and replace pair with one 4" well, Possible ramp required and ATV rig.		Recharge slowly. Hand bailed dry.	Abandon with Muddy River WP mobilization. Possible replacement with deeper well in future workplan.
Unit 1,2,3 Pond Wells	P-178	1986	Recharge slowly	Abandon and replace pair with one 4" well. Possible ramp required and ATV rig.	Recharge slowly. Hand balled dry.	Recharge slowly. Hand bailed dry.	Abandon with Muddy River WP mobilization. Possible replacement with deeper well in future workplan.
Unit 1,2,3 Pond Wells	P-10	5/4/1988	Roots.	Abandon and replace. Do at same time as KMW-9.	No roots noted. Dry @ Sals.	No roots noted, Dry @ 4 gals.	Continue to observe. Potentially abandon and replace with 4" well in future workplan.
Unit 4 Pond Wells	IMW-2SR	7/20/2011	Roots	Brush clean	No roots noted	Roots in purge water	Continue to observe. Well recently installed.
Unit 4 Pond Wells	KMW-19	2/28/2000	Silty, Hand bailed dry.	NA	Sity, Hand bailed dry.	Not sampled. Covered with roots.	Water level can still be obtained. Observe status 1st qtr. 2014: If roots still an issue, cease sampling starting 3rd qtr. 2014 and use as water level only.
Unit 4 Pond Wells	KMW-20	5/2/2005	Sity, Hand bailed.	NA	Silty. Hand bailed.	sampled; silty, roots.	Continue to observe, Roots observed for the first time Q3 2013.
Unit 4 Pond Wells	MW-1R	8/20/2007	Clear, No roots	NA	Clear, No roots	sampled; dry @ 18 gals, roots on pump	Continue to observe. Roots observed for the first time Q3 2013.
Unit 4 Pond Wells	MW-10RR	7/11/2011	Roots	Brush clean	No roods noted. Light green grey.	slyellow hue, dry @ 13 gals; roots on pump	Continue to observe. Well recently installed.

CORRECTIONS FIRST SEMI-ANNUAL 2013 TABLE 1 MISSING PAGE

Table 1 - Monitoring Well Sampling Results 1st Quarter 2013

NV Energy - Reid Gardner Station Unit 4 Pond Wells CMW-75 KMW-15 MW-1R MW-4 MW-8 MW-9 IMW-2.5D IMW-2.5S IMW-3D IMW-3S 2/27/2013 2/27/2012 2/27/2012 2/27/2012 2/27/2012 2/27/2012 2/27/2012 2/27/2012 2/27/2012

Result										3	1819	CCESS	ANI	ED	JdV	۸A۵	: то	ON												
Result										371	8159	ACCES	NI C	337	dМ	MA	'S I	ON												
Result	7.33	3,740	370	< 0.5	1,100	AN	Ą	A	2,728	NA		NA	0.15	< 0.003	1.2	< 0.003	98	< 0.005	NA	140	0.21	0.033	< 0.005	37	< 0.02	260	NA	< 0.005	< 0.003	NA
Result	7.24	3,450	340	< 0.5	970	A	NA	Ā	2,560	NA		NA	0.15	< 0.003	1.3	< 0.003	100	< 0.005	Ą	140	0.22	0.032	< 0.005	34	0.022	200	Ą	< 0.005	< 0.003	AA
Result	68.9	11,210	1,200	< 0.5	5,300	< 0.05	<2	337	11,290	1.8		59.4	< 0.02	< 0.003	4.2	< 0.003	540	< 0.005	2.0	089	3.4	0.022	0.029	64	< 0.02	1,700	16	< 0.005	< 0.003	< 0.005
Result	6.98	5,110	510	< 0.5	1,700	NA	NA	AN	3,972	NA		AN	0.031	< 0.003	2.8	< 0.003	200	< 0.005	AN	200	0.23	0.065	< 0.005	51	< 0.02	760	AN	< 0.005	< 0.003	AN
Result	7.15	3,950	300	< 0.5	1,100	0:30	<2	13	2,954	4.2		10.3	0.051	< 0.003	3.8	< 0.003	120	< 0.005	4.2	150	0.14	0.012	< 0.005	41	< 0.02	640	4.6	< 0.005	< 0.003	< 0.005
Result	7.04	4,150	310	< 0.5	1,800	NA	NA	AN	3,684	NA		NA	0.22	< 0.003	1.5	< 0.003	470	< 0.005	A	110	0.13	0.019	< 0.005	44	0.034	440	NA A	0.0052	< 0.003	NA
Result	7.05	29,400	2,400	< 0.5	18,000	< 0.05	<2	789	31,840	11		350	0.24	> 0.006	27	> 0.006	460	< 0.01	< 0.5	1300	1.1	0.14	0.058	200	< 0.02	2,700	14	< 0.01	> 0.006	< 0.01
Result	7.12	6,470	370	< 0.5	3,200	NA	NA	AA	5,744	NA		AN A	0.63	< 0.003	4.3	< 0.003	460	< 0.005	NA	270	0.084	090.0	< 0.005	09	< 0.02	096	NA	< 0.005	< 0.003	NA

GRAPHS

ANNUAL SAMPLING RECORD

QTRLY	Quarterly - Sample	s will be colle	ected in Febr	uary (1st Otr	May (2nd Ot	tr), August (3rd Qtr), and November (4th Qtr).
SEMI-A	Semi-Annual - Sam					
				77707		
		1 20	THE RESERVE OF THE PERSON NAMED IN COLUMN 1	ITORING V	and the second second	
WELL NUMBER	SAMPLING	20	13 SAMPLI	ES COLLEC	TED	REMARKS
WELL NUMBER	FREQUENCY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	REMARKS
				Mesa Wells		la a 186 (186 - 186 -
LMW-2	SEMI-A*	Х		X		Sampled 8/21/2013 for SNHD purposes
LMW-3	SEMI-A*	X		X		Sampled 8/21/2013 for SNHD purposes
LMW-4 LMW-4R	ABANDONED SEMI-A*	V				Well abandoned July 2011
LMW-5	ABANDONED	Х		X		Sampled 8/21/2013 for SNHD purposes Well abandoned July 2011
LMW-5R	SEMI-A*	Х		x		Sampled 8/21/2013 for SNHD purposes
LMW-6	ABANDONED					Well abandoned July 2011
LMW-6R	SEMI-A*	X		X		Sampled 8/20/2013 for SNHD purposes
LMW-7	SEMI-A*	X		X		Sampled 8/20/2013 for SNHD purposes
LMW-8 LMW-8R	ABANDONED SEMI-A*	Х	344	х		Well abandoned July 2011 Sampled 8/21/2013 for SNHD purposes
LMW-9	SEMI-A*	X		X		Sampled 8/20/2013 for SNHD purposes
LMW-10	SEMI-A*	X		X		Sampled 8/20/2013 for SNHD purposes
LMW-11	SEMI-A*					NOT SAMPLED ANY MORE
			Harris St.			
KMW-12	SEMI-A*	Х		X		Sampled 8/21/2013 for SNHD purposes Well abandoned Nov 2005
KMW-13 KMW-16	ABANDONED SEMI-A*	Х		x		Sampled 8/20/2013 for SNHD purposes
KMW-17	ABANDONED	^		^		Well abandoned Aug 2006
			Hoga	n Wash Area	Wells	
KMW-20	SEMI-A	Х		Х		Sampled 8/21/2013
KMW-1D	SEMI-A	X		X		Sampled 8/20/2013
KMW-1M KMW-1S	SEMI-A SEMI-A	X X	in the second	X		Sampled 8/21/2013 Sampled 8/21/2013
IMW-2D	SEMI-A SEMI-A	X		X		Sampled 8/21/2013
IMW-2S	ABANDONED					Well abandoned July 2011
IMW-2SR	SEMI-A	Х		X		Sampled 8/21/2013
KMW-19	SEMI-A	Х		2/0.1.2		Not sampled, too many roots
KMW-11	SEMI-A	v	Unit 41	B/C Area Por	id Wells	Sampled 8/21/2013
KMW-2D	SEMI-A SEMI-A	X		X		Sampled 8/22/2013 Sampled 8/22/2013
KMW-2M	SEMI-A	X		X		Sampled 8/22/2013
KMW-2S	SEMI-A	Х		Х		Sampled 8/22/2013
MW-10R	ABANDONED					Well abandoned July 2011
MW-10RR	SEMI-A	X		X		Sampled 8/21/2013
MW-2R MW-3R	SEMI-A ABANDONED	Х		Х		Sampled 8/22/2013 Well abandoned July 2011
MW-3RR	SEMI-A	Х		х		Sampled 8/22/2013
MW-5	SEMI-A	Х		X		Sampled 8/22/2013
MW-6	SEMI-A	X		Х		Sampled 8/22/2013
MW-7	ABANDONED					Well abandoned July 2011
MW-11S	QTRLY QTRLY	X	X	X		Sampled 8/22/2013
MW-11M MW-12S	QTRLY	X	X	X		Sampled 8/22/2013 Sampled 8/22/2013
MW-12M	OTRLY	X	X	X		Sampled 8/22/2013
MW-13	QTRLY	Х	Х	Х		Sampled 8/22/2013
MW-14S	QTRLY	Х	Х	Х		Sampled 8/22/2013
MW-14M	QTRLY	X	X	X		Sampled 8/22/2013
MW-15 MW-16S	QTRLY QTRLY	X	X	X X		Sampled 8/22/2013 Sampled 8/22/2013
MW-16M	OTRLY	X	X	X		Sampled 8/22/2013 Sampled 8/22/2013
				nd 4A Area	ond Wells	
CMW-1D	SEMI-A	X		X		Sampled 8/21/2013
CMW-1S	SEMI-A	X		Х		Sampled 8/21/2013
CMW-2D CMW-2S	SEMI-A SEMI-A	X		X		Sampled 8/21/2013 Sampled 8/21/2013
CMW-2S CMW-3D	SEMI-A SEMI-A	X		X X		Sampled 8/21/2013 Sampled 8/21/2013
CMW-3D	SEMI-A	X		X		Sampled 8/21/2013
CMW-4D	SEMI-A	X		X		Sampled 8/21/2013
CMW-4S	SEMI-A	X		Х		Sampled 8/21/2013
CMW-5D	SEMI-A	X		X		Sampled 8/20/2013
CMW-5S	SEMI-A	X		X		Sampled 8/20/2013
CMW-6D CMW-6S	SEMI-A SEMI-A	X X		X X		Sampled 8/20/2013 Sampled 8/20/2013
CMW-7D	SEMI-A SEMI-A	X		X		Sampled 8/20/2013 Sampled 8/20/2013
CMW-7S	SEMI-A	X		X		Sampled 8/20/2013
KMW-15	SEMI-A	X	STORES.	X		Sampled 8/21/2013
MW-IR	SEMI-A	Х		X		Sampled 8/20/2013
MW-4	SEMI-A	X	ASK SE	X	10000	Sampled 8/20/2013
MW-8	SEMI-A	X		X		Sampled 8/21/2013 Sampled 8/21/2013
MW-9 IMW-2.5D	SEMI-A SEMI-A	X X		X X		Sampled 8/21/2013 Sampled 8/21/2013
MW-2.5S	SEMI-A SEMI-A	X		X		Sampled 8/21/2013
IMW-3D	SEMI-A	X		X		Sampled 8/20/2013
IMW-3S	SEMI-A	Х		Х		Sampled 8/20/2013
sampled quarterly (QTRLY) for	SNHD purposes a	nd semi-anr	nually (SEM	I-A) for AOC	purposes	

QTRLY	Quarterly - Samples	will be colle	cted in February (1st Qtr), May (2nd Q	etr), August (3rd Qtr), and November (4th Qtr).
SEMI-A	Semi-Annual - Sam	ples will be c	ollected in February (1st Qtr) and Augu	ust (3rd Qtr).
10000			MONITORING WEST CO.	
	SAMPLING		MONITORING WELLS (Continued) 3 SAMPLES COLLECTED)
WELL NUMBER	FREQUENCY		2ND QTR 3RD QTR 4TH QTR	REMARKS
	FREQUENCI	151 Q1K	Unit 1,2,3 Pond Area Wells	
P-1R	SEMI-A		om 1,2,5 i one rice wens	Not Sampled
P-2	SEMI-A	Х	X	Sampled 8/19/2013
P-3	DESTROYED			Well destroyed by construction Q1 2009
P-4	SEMI-A	Х	X	Sampled 8/19/2013
P-5R	SEMI-A	Х	X	Sampled 8/20/2013
P-6R	SEMI-A	X	X	Sampled 8/20/2013
P-7R	SEMI-A	X	X	Sampled 8/20/2013
P-8R	SEMI-A	Х	X	Sampled 8/20/2013
P-9	SEMI-A			Not Sampled
P-9R	SEMI-A	X	X	Sampled 8/19/2013
KMW-9 P-10	SEMI-A SEMI-A	X	X	Sampled 8/19/2013 Sampled 8/19/2013
P-11	SEMI-A SEMI-A	X	X	Sampled 8/19/2013
P-12	SEMI-A	X	X	Sampled 8/19/2013
P-13R	SEMI-A	X	X	Sampled 8/19/2013
P-14R	SEMI-A	Х	X	Sampled 8/19/2013
P-15AR	SEMI-A	Х	X	Sampled 8/19/2013
P-17A	SEMI-A	Х	X	Sampled 8/19/2013
P-17B	SEMI-A	Х	X	Sampled 8/19/2013
P-18A	SEMI-A	X	X	Gauged 8/19/2013, No Sample, well was dry
P-18B	SEMI-A	Х	X	Sampled 8/19/2013
P-19A P-19AR	ABANDONED	77	W Charts	Well abandoned July 2011
P-20A	SEMI-A SEMI-A	X	X	Sampled 8/19/2013 Sampled 8/19/2013
P-20B	SEMI-A	X	X	Sampled 8/19/2013
KMW-8R	SEMI-A	X	X	Sampled 8/19/2013
P-21	SEMI-A	X	X	Sampled 8/19/2013
P-22	SEMI-A	X	X	Sampled 8/19/2013
KMW-4D	DESTROYED			Well destroyed by livestock Q4 2004
KMW-4M	DESTROYED			Well destroyed by livestock Q4 2004
KMW-4S	DESTROYED			Well destroyed by livestock Q4 2004
IMW-16S	SEMI-A	X		No access to well in Q3 2013
IMW-16D	DESTROYED			Well destroyed Q2 2009
MONITORING WELL REF Field Depth to Groundwater Groundwater Elevation pH	Lab Specific Conductan TDS Chloride Nitrate as N Sulfate		METERS (To be done QTRLY) Dissolved Mearsenic Beryllium Boron Cadmium Calcium Chromium Magnesium Manganese	etals ONLY Molybdenum Nickel Potassium Selenium Sodium Titanium Vanadium
ANALYZE FOR THESE PAF Fluoride Strontium Sulfide (H2S) Sulfite Total Organic Carbon Total Suspended Solids Turbidity Zinc	RAMETERS FOR THE	SE WELLS	IN ADDITION TO THE REGULAR (PARAMETERS IMW-9R HM-28 IMW-12.5R HM-52R IMW-13R HM-53 IMW-14R HM-54 IMW-17

QTRLY	Quarterly - Sample	s will be colle	ected in Febr	uary (1st Qtr	, May (2nd Qt	tr), August (3rd Qtr), and November (4th Qtr)		
SEMI-A	Semi-Annual - Sam	ples will be	collected in I	February (1st	Qtr) and Augu	ust (3rd Qtr).		
		ADDIT	IONAL MO	NITORING	WELLS (Cor	ntinued)		
			Form	er ASP-1,2,3	Area			
WELL NUMBER	SAMPLING	20	13 SAMPLI	ES COLLEC	TED	REMARKS		
WELL NUMBER	FREQUENCY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	1 REWARKS		
IMW-9R	SEMI-A	X		X		Sampled 8/22/2013		
MW-12.5R	SEMI-A	Х		Х		Sampled 8/22/2013		
MW-13R	SEMI-A	Х		X		Sampled 8/22/2013		
MW-14R	SEMI-A	Х		X		Sampled 8/22/2013		
IMW-15	SEMI-A	22/				Not able to sample, too many roots in well		
IMW-17	SEMI-A	Х		Х		Sampled 8/22/2013		

MONITORING WELL REPORTING AND ANALYSIS PARAMETERS (To be done QTRLY)

Field Depth to Groundwater Groundwater Elevation

<u>Lab</u> VOC 8260 Full Scan

TDS

Chloride Sulfate Nitrate as N Phosphates as P Dissolved Metals Only

Arsenic Barium Beryllium

Boron

Cadmium

Calcium

Manganese Molybdenum Nickel Selenium Sodium Titanium

Chromium Vanadium

Magnesium	ı

			Dissolved C	hlorinated S	olvents Area	
WELL NUMBER	SAMPLING	20	13 SAMPL	ES COLLEC	TED	REMARKS
WELL NUMBER	FREQUENCY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	REWARKS
HM-8	SEMI-A	X		X		Sampled 8/23/2013
HM-48	SEMI-A	Х		Х	STATE OF	8/27/2013 - Free Product, gauged only
HM-50	DESTROYED					Well paved over Q3 2009
HM-50R	SEMI-A	Х		X		8/27/2013 - Free Product, gauged only
HM-51	DESTROYED					Well destroyed by construction Q1 2008

MONITORING WELL REPORTING AND ANALYSIS PARAMETERS (To be done QTRLY)

Depth to Groundwater

Groundwater Elevation

<u>Lab</u> VOC 8260 Full Scan

Ethylene TDS Chloride

Sulfate Nitrate as N Phosphates as P Dissolved Metals Only

Arsenic Barium Beryllium Boron

Manganese Molybdenum Nickel Selenium Cadmium Sodium Titanium

Vanadium

Calcium Chromium Magnesium

QTRLY	Quarterly - Samples	will be coll	ected in Febr	uary (1st Qtr), May (2nd Qt	tr), August (3rd Qtr), and November (4th Qtr).
SEMI-A	Semi-Annual - Sam	ples will be	collected in F	February (1st	Qtr) and Augu	ist (3rd Qtr).
		ADDIT		The second secon	WELLS (Con	atinued)
				nagement U		
WELL NUMBER	SAMPLING			ES COLLEC		REMARKS
	FREQUENCY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	REMARKS
HM-19	SEMI-A	X		X		Sampled 8/23/2013
HM-20	SEMI-A	X	Provide La	X		8/27/2013 - Free Product, gauged only
HM-24	SEMI-A	X		X		Sampled 8/23/2013
HM-28	SEMI-A	X		X		Sampled 8/23/2013
HM-31R	SEMI-A	X		Х		Sampled 8/23/2013
HM-32	ABANDONED					Well abandoned July 2011
HM-32R	SEMI-A	X		х		Sampled 8/23/2013
HM-33	SEMI-A	X		Х		Sampled 8/23/2013
HM-52	ABANDONED					Well abandoned July 2011
HM-52R	SEMI-A	X		Х		Sampled 8/23/2013
HM-53	SEMI-A	X		х		Sampled 8/23/2013
HM-54	SEMI-A	X		х		Sampled 8/23/2013
HM-60	SEMI-A	Х		Х		Sampled 8/23/2013
Unit 4 Dewatering Well Effluent	SEMI-A	Х		Х		Sampled 8/23/2013

MONITORING WELL REPORTING AND ANALYSIS PARAMETERS (To be done QTRLY)

ANALYZE FOR THESE PARAMETERS IN THE UNIT 4 DEWATERING WELL EFFLUENT IN ADDITION TO THE REGULAR PARAMETERS

Depth to Groundwater* Groundwater Elevation* <u>Lab</u> TDS Chloride Sulfate Nitrate as N Phosphates as P Dissolved Metals Only Arsenic Manganese Fluoride Barium Molybdenum Strontium Beryllium Nickel Boron Selenium Cadmium Sodium

Sulfide (H2S) Sulfite Total Organic Carbon Total Suspended Solids

Calcium Titanium Chromium Vanadium Turbidity Magnesium Zinc

*except Unit 4 Dewatering Well Effluent

SURFACE WATER ELEVATIONS

			SURFACE	WAIEREL	EVALIONS	
POND NUMBER	SAMPLING	20	13 SAMPLI	ES COLLEC	TED	REMARKS
TOND NUMBER	FREQUENCY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	REWARKS
MR Upstream	QTRLY	X	X	X		Measured 8/23/2013
MR Midstream	QTRLY	X	X	X		Measured 8/23/2013
MR Downstream1*	QTRLY	X	X	X		Measured 8/23/2013
MR Downstream2*	QTRLY	X	X	X		8/23/2013 - No Flow in Upper Culvert

SURFACE ELEVATIONS REPORTING (To be done QTRLY)

<u>Field</u> DTW

pН

Surfacewater Elevation

MR - Muddy River

*Downstream 1 OR Downstream2 should be gauged, depending on river stage